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Abstract—Federated Learning (FL) is an emerging technique
that assures user privacy and data integrity in distributed
machine learning environments. To perform so, chunks of data
are trained across edge devices and a high performance cluster
server maintains a local copy without exchanging it with other
parties. In this work, we investigate a FL scenario in a real-
world case study using S5, 10 and 20 Raspberry Pi devices
acting as clients. Under this setup, we employ the widely known
FedAvg algorithm which trains each client for several local epochs
and then the weight of each model is aggregated. Moreover
we perform experiments across imbalanced and noisy data so
as to explore scalability and robustness based on real-world
datasets were noise is present and we also propose two innovative
algorithms where the FL scenario is considered as a peer-to-peer
formulation. Ultimately, to ensure that each device is not over-
sampled a client-balancing Dirichlet sampling algorithm with
probabilistic guarantees is proposed.

Index Terms—Decentralized Machine Learning, Federated
Learning, P2P FL, Client Balancing Dirichlet Sampling

I. INTRODUCTION

With the rapid emerge of Artificial Intelligence there is vast
amount of applications that are developed within the scope of
autonomous systems and to aid in peoples lives. However, this
rapid trend has created serious concerns regarding personal
privacy [1]. Therefore, large tech companies such as Google
and Apple have turned to Federated Learning (FL) techniques
that enhance privacy among widely-used applications includ-
ing Siri, Google Chrome and Gboard [2]. In particular, the
term FL employs a distributed machine learning technique
that allows training to occur across several machines on a vast
repository of decentralised data existing on devices like mobile
phones [3]. Then, a central server aggregates these local
updates [4]. This process solves the core issues of exposing
data privacy, ownership, and location. The aggregation process
takes place by iteratively averaging weights from models, via
training each client for several local epochs. This process is
known as the formative FedAvg [4] algorithm. For faster and
more stable convergence, additional aggregation methods have
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been developed, including the ensemble distillation algorithm
namely FedDF [5].

Within a FL scheme, there is always the dilemma whether
to focus on asynchronous or synchronous training algorithms.
Comprehensive work on deep learning has used asynchronous
training while other works as in [6], have proven that there is
a consistent trend towards synchronous large batch training,
even occurring within data-centers. The Federated Averaging
(FedAVG) algorithm operates in a similar way. Furthermore,
several approaches for enhancing privacy guarantees including
differential privacy [7] and secure aggregation [8], essentially
require some notion of synchronization on a fixed set of
devices, so that the server-side of the learning algorithm only
consumes a simple aggregate of updates from many users.

In related works, many benchmarks of FL performance over
algorithmic choices exist but are often performed by simulat-
ing the federation on central compute clusters [5]. In this work,
we aim to capture the unique hardware setup of FL use-cases
such as smartphones, where a number of computationally weak
edge devices where the data is stored. This is accomplished
by conducting local training of a convolutional neural network
(CNN) on 10 Raspberry Pi devices across which CIFAR-10
is distributed, and then centrally aggregated on these locally
trained models using FedAvg and FedDF methods.

This work intends to examine the effect of FedAvg hyper-
parameters, such as the number of clients per communication
round and local epochs, on convergence time, analyse aggrega-
tion resilience against unbalanced and noisy data, and identify
performance trade-offs in the physical hardware scenario.
Moreover, a fine-tuning to traditional FL takes place using
two methods: a) using a p2p network where the weights client-
processed and b) using a method for p2p federated learning.

The remainder of the paper is organized as follows. In
Section II related work in the field of Federated Learning
is surveyed and covered. Section III describes the method-
ology in both theory and application level while Section
IV highlights the experimental results and their findings. A
discussion takes place in V and finally, the conclusions and
future directions of this work are presented in Section VI.

Authorized licensed use limited to: University of Patras. Downloaded on November 03,2022 at 22:37:01 UTC from IEEE Xplore. Restrictions apply.



II. RELATED WORK
A. Development of Federated Learning

Federated learning (FL) although appears to be a novel
architecture for protecting privacy among users, is sometimes
not understood by the general public. Therefore, the examples
presented in this section highlight the inner workings of FL for
better understanding. Suppose that a certain number of distinct
businesses are willing to cooperate on a machine learning
model training process [3]. Based on the GDPR criteria, the
data utilized by both parties cannot be used in the absence of
the consent of their respective users. In contrast, a business
may develop a model for machine learning using their own
data stored locally. Assuming that each of the involved parties
constructs a task model, it may be challenging to construct and
train an optimal machine learning model because of limited
and sometimes noisy data. The aim of FL is to address the
aforementioned issues by guaranteeing that the local data of
each organisation remains internal. Utilizing an encryption
technology, parameters are transferred among clients and the
central server so as to develop a global model in order to not
violate the laws regulating the protection of privacy.

B. Horizontal Federated Learning

Horizontal federated learning (HFL) is a sub-sector of FL
that can be utilized in case the characteristics of a user
across two given datasets significantly overlap, but the users
themselves do not. HFL entails slicing datasets horizontally
(across the user factor) and removing for training the portion
of data whose user attributes are same but whose users are
not identical. In particular, distinct rows containing the data
have identical characteristics and HFL may thereby extend the
sample size of users.

For example, there might be two suppliers offering the
same service in separate locations whose user groups are
mostly comprised of individuals from their respective regions,
with minimal overlap. Nevertheless, their companies are really
comparable, thus the user characteristics of the records are as
well. In this regard, we may train a model using horizontal
FL, which besides that it increases the total amount of training
samples, it also improves the overall accuracy achieved by the
model. In the case of HFL, it is feasible that all participants
compute and submit local elements for the central server to
combine them and construct a global model. Moreover, the
procedure of processing and transferring elements may expose
private information of the users. Widely used solutions for
the aforementioned issue include homomorphic encryption
schemes [9], differential privacy methods [7], and secure
aggregation [10] frameworks, which may guarantee the safety
of gradient switching in HFL.

A FL modelling scheme built for Android phones was
proposed in 2016 by Google [8] in which, a user occupy-
ing an Android phone is able to update the parameters of
the model in constant time locally, and then to upload the
parameters onto the cloud, enabling all the owners of the
data under the corresponding feature dimension to develop

a FL model. The aforementioned framework comprises of
a fundamental implementation of HFL, including differential
privacy [7] and secure aggregation techniques. An HFL system
namely BlockFL is introduced in [11], whereabouts each
device leverages the widely used blockchain network to update
its local learning model. In [12], the authors suggest a FL
technique named MOCHA to overcome multitasking security
issues, which enables several sites to collaborate and perform
tasks while maintaining privacy and security. Another method,
namely multi-task FL also reduces the communication cost and
increases the fault tolerance of the original distributed multi-
task learning method. In [4], FL separates the data, enabling
the corresponding client to prevent uploading of sensitive
information to a central-server. Then, every client constructs
a local model, submits it to the server, and stores a copy of a
global gradient-based model.

C. Vertical Federated Learning

In the use-case that characteristics of users across two given
datasets overlap slightly, but the users overlap a lot, a common
solution to overcome this matter is vertical federated learning
(VFL). In particular, it involves dividing the given datasets
vertically in a user/feature dimension, removing for training
purposes the portion of data where users are the same but user
characteristics differ. In particular, the same user is represented
in many columns. VFL may thereby expand the training data
based on the feature dimension.

For instance, there might be two distinct companies, a bank
in one location and a brand for e-commerce in the same exact
location. The user groups of such companies are likely to
contain the majority of local population, resulting in a larger
overlap of users. Due to the fact that banks record the income
of users, their spending behaviour and credit rating, while e-
commerce stores the users browsing and purchase histories,
their user characteristics are largely different. VFL is the
aggregation of various diverse features in a secure state to
improve the performance of the model. Numerous machine
learning models, including the logistic regression model, the
tree structure model, and the neural network model, have been
shown to be built on this federated system.

In order to perform vertical data partitioning, there is a vast
amount of machine learning techniques including classification
[13], statistical analysis [14], gradient descent [15], linear
regression for privacy [16], and privacy-based data mining
techniques [17]. In certain instances of VFL, there are also
vertically partitioned data. In [18], a VFL system named
SecureBoost is suggested, whereabouts all members contribute
user characteristics to train jointly in order to increase the
precision of decision-making. This training scheme is lossless.
In [19], a suggested privacy-protected logical regression model
based on VFL is introduced. The method utilises parallelizing
objects for analysis and performs logistic regression in a dis-
tributed manner for supplementary homomorphic encryption
[20], which aids in privacy protection and also improves the
accuracy of the classifier.
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III. METHODOLOGY
A. Federated Learning Methods

In this section federated learning is explored and its im-
plementation. In particular, FL is implemented by setting up
K clients each with a disjoint training dataset partition of
size my across a larger dataset. A global model namely Mg,
was deployed and stored across a central server, and for L
rounds, defined as communication rounds, S < K clients were
sampled using a Dirichlet sampling algorithm, each of which
received a local copy of M. Each client performed E local
epochs of learning before returning the updated local model
M, to the server. In the initial FedAvg algorithm, the server
aggregated the S returned models by averaging over all model
weights, yielding a new global model to be sent out for the
next communication round, minimizing an implicit objective
function f of model weights w when using a loss function ¢:
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where Fj(w) is the objective function of the k-th client [4].

A different aggregation method, namely the FedDF algo-
rithm was implemented as well, where the weight averaging
method of FedAvg is replaced by running ensemble distillation
for model fusion using an unlabeled dataset similar to the
training datasets. Using similar hyperparameters as in [5],
M(GZH was produced by distilling the S local models M,(fq)
for 10* batch updates against a Kulback-Leibler (KL) diver-
gence criterion with a batch size of 128 and a learning rate of
10~2 used for Adam optimization with cosine annealing. Early
stopping was implemented by calculating the KL divergence
against an unlabeled validation set every 10° updates and
terminating if evaluation loss did not fall. The KL divergence
criterion is further described in Section III-G.

B. Embedded Devices

The engineering part of this work shown in Figure 1, was
divided into two parts: a central high-performance cluster
(HPC) and 10 Raspberry Pi model 4 devices, each with 4 GB
memory and a quad-core 1.5 GHz CPU. In particular, the Pi
devices were connected on a different network from the HPC
to simulate a more realistic communication scenario. The HPC
server was responsible for aggregating the local models trained
by the devices and evaluating the resulting global model M.

Every Raspberry Pi hosted a Flask server that exchanged
models, performed local training, and reported running mem-
ory usage; a crucial factor when operating on such resource-
constrained hardware. Moreover, the server provided a route
for transmitting requests to enable basic over-the-air updates.

The Raspberry Pi setup was able to run experiments where
K > 10, that is, maintaining more than 10 clients and thus
dataset partitions with the constraint of no more than 10 clients
being sampled each round: S < 10. This was implemented
by storing all K client datasets on every device, and in each
communication round [, assigning each of the S sampled client
datasets to a Raspberry Pi.

The Pi devices were attached to a switch that was cable-
connected to the router. When the switch was turned off, the
Pis were configured to connect through Wi-Fi, enabling mea-
surements of the effect of communication overhead under two
conditions: reasonably fast Ethernet and relatively sluggish
Wi-Fi. In particular, the network used had a bandwidth of
100/100 Mbit/s, all of which was utilised on Ethernet, but only
about 10% (10/10 Mbit/s) on Wi-Fi. Each client in Figure 1
corresponds to a dataset partition k; ...kgs where Raspberry
Pi 1 trains a model as client k;, and Raspberry Pi 10 as ;.

High Performance Cluster Server

M) M)

M ME

Data k; /

Fig. 1: The federated setup performing updates at communi-
cation round [, at which S < 10 clients are sampled.

C. Problem formulation and dataset

To deploy the federated learning scenario described previ-
ously, we select the CIFAR-10 computer vision (CV) dataset
that contains 32 x 32 images for image classification into object
classes such as birds, cats, and aeroplanes. Due to device
memory limits and for faster training times all images used,
were grey-scaled. The training dataset contains 5K images for
each of the 10 label. For the model M, we chose a network
with two convolutional layers followed by two linear layers,
which is further detailed in Table I.

The model architecture is described below, listing the se-
quential operations and hyperparameters.

TABLE I: Model Architecture and layers.

Layer type Hyperparameters

2D Convolution 1 in-channel, 16 out-channels, 3 x 3 kernel, stride of 1

2D Convolution 16 in-channels, 32 out-channels, 3 x 3 kernel, stride of 1

2D MaxPooling 2 x 2 kernel, stride of 2, no padding, dilation of 1

Dropout p=25%
Linear w. bias 6, 272 features in, 64 features out
Dropout p=50%

Linear w. bias 64 features in, 10 features out

The model was limited in size to accommodate the strict
memory limits on the Raspberry Pi devices. Using the Adam
optimizer with a learning rate 7, which was decayed every
local epoch: n < vn,v < 1, optimization for the E local
epochs on each device was performed.

D. Handling unbalanced and noisy data

1) Dirichlet sampling: The total training dataset was di-
vided into K evenly sized partitions among all the clients.
In practice, class balance can rarely be assumed in the FL
setting [2]. In order to simulate varying levels of imbalance,
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the Dirichlet distribution, Dir(ex), was used. The length of the
parameter vector o corresponds to the number of labels, 10,
and we let «; = «. Every sample 7 ~ Dir(a) is a probability
distribution over labels and o determines the uniformity of the
corresponding distribution. For o« — 0, one label dominates,
where as for o« — oo, 7 will be increasingly uniform. For
a = 1, every possible 7 is equally likely to happen.

For every client, w was sampled making the label distri-
bution Dirichlet for every client. To keep the client datasets
disjoint while using a maximal part of the total dataset,
we created a client-balancing Dirichlet sampling algorithm
described in detail in Section III-E.

E. Client-Balancing Dirichlet Sampling Algorithm

Let D denote a dataset of size |D| with [ different labels,
of which there are |D| /I each. The goal of the algorithm is
to divide the dataset among C' clients, such that the label
distribution, 7r; of each client 7, follows the same Dirichlet
distribution, Dir(c), where every a; € a,j = 1...1 is
the same value. For simplicity, the Dirichlet distribution will
therefore be parametrized only by «; Dir(a).

The distributions are structured into a matrix P of size C' x|,
where the i-th row is 7r;. The ¢j-th element, P;;, is then the
fraction of label j on device . Furthermore, the sum of the j-
th column is the relative usage of label j scaled by the number
of clients, C'. As such, for every label to be used equally much,
every column should sum to C'/I. If any columns sum is more,
the corresponding labels are oversampled, and so all of P
needs to be normalized to make the largest column-sum equal
C'/1, causing some of part of the data to be disregarded. Step
5 of the algorithm mapper swaps to u values while step 6 does
all possible swaps. If there is no other possible swap, step 17
stops the process. Finally, step 21 normalizes P by the most
sampled label. To determine how close P is to achieving the
goal of making every column sum to the same a measure, u, is
utilized. The lowest value of this measure should be achieved
for a P where every column sums to C'/l, while it should be
progressively higher for poorer P values. We chose the L1
norm of difference in column sums and C/I:

C C
T2
=1

Similarly, standard deviation or the reciprocal of the entropy
could be used. The final thing to keep in mind before the
algorithm is introduced is that reordering 7r; makes it equally
likely to be sampled from Dir(«).

The algorithm changes the ordering within each 7r; itera-
tively, until «(P) is no longer lowered. The full algorithm
steps are shown in Algorithm 1. The final P produced by the
algorithm is normalized such that all data points with the most
sampled labels are used exactly once.

Mostly, labels were sampled more evenly for higher values
of C' and «. Running the algorithm for C' = 100 and o = 0.01
for 100 times indicated an average undersampling of less than
1% with the largest undersampling being 3.3%. Rarely was

l

u(P) = Z

j=1

2

Algorithm 1 Client-Balancing Dirichlet Sampling (CBDS)

1: for 7 from 1 to C do
2: P, « Dir(«)

3: end for

4: loop

5: d < Map()

6: for ¢ from 1 to C do

7: for all (j1,52) € (1...0) x (1...1),51 # j2 do
8: Swap P;;, and P;j,

9: d[(i, j1, j2)]  u(P)

10: Swap P;;, and P;;, back
11 end for

12: end for

13: if min(d) < u(P) then

14: 1, J1, jo < argmin(d)

15: Swap P;;, and P;j,

16: else

17: Break

18: end if

19: end loop

20: T Zil ™
21: P« P/ max(m)

any one label undersampled by more than 5%, a sign of the
strength of the algorithm, even for a low value of a.

F. Extension to Federated Learning

1) Peer-to-peer: In this subsection one of the possible
extensions to federated learning is presented, in particular,
a peer-to-peer scenario. Generally in FL, users would send
their weights and evaluations to a central agent C' that would
average their weights and return the averaged weights back to
all the users/clients. The averaging is based on the averaging
methodology being utilised by C. The averaged weights are
then used by the users in their models for the next round of
federated learning. But in a peer-to-peer context, the averaging
process takes place on every user’s device itself instead of C.
Every user U; in U sends its weights to every other user in U
which means that every user U, has access to the weights from
every user in U. We call this set of weights received from other
users Womers. U; then performs evaluations locally using its
own local validation data on its own model M; and on models
initialised from every weight from the set Wyers. . This way
it can emulate models that the other users have learnt. Doing
so, U; can check how relevant everyone else’s models are for
its own data and take appropriate action depending on the
averaging methodology being used. The evaluations obtained
from this process are then used in the averaging process by
U; to calculate Wy, . This Wy, is used in the next round of
local learning by U;. It is not shared with any other users. As
Wavg is now specific to U;, we call it W; 4.

Algorithms 2 and 3 present the proposed extension to the
standard FL where devices act as users in a P2P scenario.

Algorithm 3 is a simulation of the peer-to-peer communica-
tion that would take place in a real world scenario where the
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Algorithm 2 Peer-to-Peer Side Processing on Client

1: def user(set_of _weights):

2: if set_of weights != None: then

3 new_weights = local_average(set_of_weights)
4 M; .set_weights(new_weights)

5. end if

6: evaluation = device.evaluate_model ()

7: device.add_pre_fit_evaluation(evaluation)
8: for e in local_epochs : do

9: M; .train()

10: end for

11: evaluation = device.evaluate_model ()

12: device.add_post_fit_evaluation(evaluation)

Algorithm 3 Peer-to-Peer Federated Learning

def federated_learning_p2p(model):
send_to_devices(model)
set_of_weights = None
for round in rounds: do
for device in devices: do
device(set_of_weights)
set_of_weights = []
end for
for device in devices: do
set_of_weights.append(device.weights)
end for
end for

R A A R ol e

—_ ==
N e

devices would broadcast their weights to one another. In the
simulation, the algorithm acts as a coordinator for the process
and takes care of sharing every device’s weights with all
devices by collecting every device’s weights and sending the
set of weights to everyone. The algorithm starts off by sending
all the users in U the model M that they will be using in this
process. Then, for every round of federated learning, we start
off by training all the users which is illustrated in Algorithm
2. In this process, if the algorithm provides a set of weights to
a user U;, U; will calculate the averaged weights based on the
local averaging methodology and then initialise its model with
the newly computed averaged weights. The averaging will be
discussed more in depth in the following section. If no weights
are provided to the user, then the weights of the user’s model
are not changed. The model is then evaluated on the U; ’s
local validation data and the evaluation results are stored in
the pre_fit evaluations. After doing so, the model is trained
for a number of epochs and then once again evaluated on the
U; ’s local validation data and the evaluation results are stored
in the post_fit evaluations. After the training process, all the
weights from the users are collected and sent to every user in
the next round of federated learning. When the next round of
federated process begins, the whole process is repeated. This
is performed for a set number of federated learning rounds.
The implementation of this framework requires minimal
changes with respect to the implementation of the central

approach. The changes in implementation to cater to Algo-
rithms 2 and 3 are explained here. After the train method
is called on every U;, we iterate over all devices again and
create a dictionary mapping of user ID to their weights such
that U; ’s ID ¢ points to W;. Device ID i can be accessed
from U; by using the get_id method. We call this dictionary
id_to_weights. This dictionary is then passed into the train
method of Uj; in the next round of federated learning instead
of the averaged weights which is a list of numpy arrays. In
the train method of U;, we now also have a check to see if
the weights provided are in a dictionary data structure. If so,
then the peer-to-peer learning process is being used and local
averaging must be performed. So the dictionary is then passed
into a method which is part of the class Average to compute
the averaged weights W; .., for U;. After the local averaging
method returns W; 4.4, the set_weights method is used to set
the weights of M, before local training commences.

G. Kulback-Leibler Divergence in FedDF Algorithm

The KL divergence measures the distance from one distri-
bution, @, to a reference distribution, P. Let P and @Q be
discrete distributions defined on the probability space X'. The
KL divergence is then defined as

DalPlQ = X Pos () @)

A key property is DxL(P||Q) = 0 & P = Q. However,
the divergence is not a metric on the space of probability
distributions, as in general Dy (P||Q) # DkL(Q|P).

In the context of FedDF, the KL divergence uses the
probability predictions of the student (or central) model as
@, while the target probabilities are used as the reference
distribution P. The target probabilities are defined as the
softmax of mean logits of the teacher models. The exact
process is described in more details in [5]. As a comparative
baseline, random partitions are also simulated, denoted as iid.

1) Noisy data: To simulate the fact that some user devices
can be unreliable, the concept of noisy clients was tested.
The training data on a noisy client had all labels replaced
with randomly chosen classes, removing all information. Then,
the performance was tested over the number of noisy clients
N < K to simulate erroneous or even adversarial clients.

H. Evaluation

For evaluation purposes, experiments were performed using
FedAvg to explore the effects of four variables: The number
of clients sampled (S), the class balance (a), the number
of local epochs (F) and the number of noisy clients (Ng).
Furthermore, the experiments regarding class balance and
noisy clients were also performed using the FedDF algorithm.

The experiments varying local epochs were repeated on the
physical federation of Raspberry Pi devices, both accessing
the Internet through Ethernet and Wi-Fi. This was selected
because altering this parameter changes the runtime of each
communication round, while the behaviour for other tested
parameters was approximately the same whether using the
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number of communication rounds or wall time as the z-axis.
All experiments used the baseline listed in Table II except for
the parameter being varied in each experiment. These were
chosen based on existing literature, in particular works [4]
[5], and some pilot experimentation.

TABLE II: Baseline parameters used for all experiments. Here,
B refers to the training batch size.

K| S |al| FE L | Nk | B n ¥
40 | 20 | 1 | 20 | 20 0 16 | 5-10~% | 0.995

IV. EXPERIMENTAL RESULTS

Figure 2 depicts the experiments conducted using the Pi
system. Please note that these tests are time-restricted and,
as a result, we have conducted a variety of communication
cycles. The lines represent the average accuracy of three
repetitions, whilst the shaded regions denote the best and worst
repetitions at any given period. Additionally, the legend depicts
the number of rounds (L) completed by each experiment
before the 50-minute timeout. Figure 3 shows the varying
clients per round over Ethernet and WiFi. A detailed analysis
of the experimental results of the proposed method using the
standard FedAvg algorithm is illustrated in Figure 4.

The results indicate that model convergence is possible
even though data is distributed across devices; a conclusion
substantiated by the fact that continuing the £ = 1 training
resulted in 65.3% of centralised learning accuracy, the p2p
side-processing method reached a 73.4% and the p2p decen-
tralized fl achieved 79.2% accuracy shown in Table III.

TABLE III: Test set accuracy when running the above learning
algorithms until test set accuracy stopped improving for 3
steps. The used FedAvg algorithm used £ = 1 and other
baseline parameters. The centralised learning algorithm used
the full training each epoch, but otherwise same optimization
approach as FL.

Algorithm Steps before convergence | Final accuracy
FedAvg 200 comm. rounds 62.1
Centralised 10 full epochs 65.3
P2P side processing 10 full epochs 73.4
P2P Decentralized FL 200 comm. rounds 79.2

From the experiments shown in Figure 2, we see that the
majority of accuracy curves decline during the majority of
the training phase. This impact becomes progressively severe
as more local epochs pass. This troublesome behaviour is
attributed to over-fitting. To verify this argument, test perfor-
mances during local epochs are shown in Figure 8. During
local epochs, the training accuracy on each client skyrockets,
while the training accuracy plummets. The immediate counter-
measure is to conduct a systematic hyperparameter search in
which improved regularising methods are evaluated. A more
general idea is to perform local early stopping, but designing
such a rule is non-trivial as we observe instances of the global,
average model improving even though all local models overfit,
as observed in early communication rounds and during the less
biased learning for E' = 10, as displayed in Figure 5.

Varying Local Epochs on Ethernet
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Varying Local Epochs on WiFi
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Fig. 2: Effect of the number of local epochs () using the
Raspberry Pi setup on ethernet (top) and Wi-Fi (bottom).

V. DISCUSSION

When concentrating on early learning that is less affected
by overfitting, Raspberry Pi timing findings demonstrate that
it is not always true that fewer local epochs are preferable. If
training time is restricted, as demonstrated in 5 to 15 minutes
for Ethernet and 5 to 40 minutes for Wi-Fi, the ideal number
of local epochs may be increased.

During this period, the increased number of local epochs
causes more time to be spent on training and less on commu-
nication, which explains why this impact is most pronounced
on relatively sluggish Wi-Fi. Thus, there exists a tradeoff in
which E should neither be too high to promote overfitting
nor too low to slow down the pace at which training data is
seen. When selecting this value, practitioners must consider
available training time and system communication latencies.

As previously shown, when running for a set number
of rounds, computational and communicational effects are
neglected, and £ = 10 seems to be the ideal balance
between under- and overfitting. Even if datasets are relatively
unbalanced, oo = 1, for the amount of clients sampled in each
round S, FedAvg performs same whether sampling half of
the clients or all of the clients. Even with just five clients
every round, the overall accuracy was 93 %, demonstrating
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Fig. 3: Effect of the number of varying clients (S) using the
Raspberry Pi setup on ethernet (top) and Wi-Fi (bottom).

the consistency of model averaging. As seen in Figure 9,
this disparity is greatest in the early rounds, when smaller
values of S produce slower convergence. The lines represent
the average performance of five repetitions, while the coloured
regions denote the least and most efficient repetitions for each
run. Additionally, Figure 6 depicts the changing alphas for the
tests.

Class balancing findings demonstrate that decreasing « to
0.01 eliminated this stability. Training on a = 100 or iid
increased learning. FedDF trials using the same hyperparame-
ters perform better. We hypothesise that distillation avoids the
harmful effects of overfitted local models by fusing models
without averaging over large, bias-inducing factors. Figure
10 shows that FedDF eliminates long-term decreasing perfor-
mance. Empirical prediction probability distributions may be
a better indicator of learnt knowledge than model weights.

This added robustness is strongly exemplified for FedDF
in the noise experiments. Here, having 10 out of the 40
data partitions being noisy ruins the performance of FedAvg
thoroughly, while FedDF can perform reasonably even at 30
out of 40. Yet again, averaging probabilities instead of model
weights appears to minimise the negative impact of fusing
models with heterogeneous parameter values.
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VI. CONCLUSIONS AND FUTURE WORK

In the context of this paper, the inner working of FedAvg
and the FedDf algorithms were demonstrated along with the
fact that privacy-preserving learning on physical devices is fea-
sible as long as algorithmic choices are made with communica-
tion efficiency and robustness against data imbalance is taken
in mind. Moreover, two proposed algorithms where the Fed-
erated Learning scenario can be transposed in a peer to peer
environment were introduced. The experimental results indi-
cate that using the simple yet very effective FedAvg algorithm
and executing more local training steps on devices increased
overfitting, while fewer epochs increased communication cost.
FedDF, a distillation aggregation technique, minimised this
overfitting and improved tolerance to varied data distributions
at the expense of more central server processing. To sample
each device a method for client-balancing Dirichlet sampling
was initiated which ensures that each device is sampled as
much times as its neighbors. Therefore, this method ensures
that each chunk of the dataset which runs locally on every
device, will be equally sampled across all devices providing
equality among all participating devices. Hence, the overall
dataset is not affected by features that might interfere with
over-sampled labels.

Future directions of this work include the investigation of
multiple realistic learning tasks, including computer vision
models with higher performance, and a federation of devices
with more computing power than the Raspberry Pi devices,
such as smartphones. Another future aspect is investigate
datasets that contain erroneous or missing values. Moreover,
efficient sampling schemes as in [21]-[25] can be used to
further improve the client-balancing method but this requires
further investigation. Ultimately, the p2p scenario presented
for side processing and P2P-FL is subject to future work along
with [26] for possible fine-tuning optimizations.
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