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Abstract. Monte Carlo simulations using Markov chains as the Gibbs
sampler and Metropolis algorithm are widely used techniques for mod-
elling stochastic problems for decision making. Like all other Monte Carlo
approaches, MCMC exploits the law of large numbers via repeated ran-
dom sampling. Samples are formed by running a Markov Chain that is
constructed in such a way that its stationary distribution closely matches
the input function, which is represented by a proposal distribution. In
this paper, the fundamentals of MCMC methods are discussed, including
the algorithm selection process, optimizations, as well as some efficient
approaches for utilizing generalized linear mixed models. Another aim of
this paper is to highlight the usage of the EM method to get accurate
maximum likelihood estimates in the context of generalized linear mixed
models.

Keywords: MCMC methods · Gibbs sampler · Maximum likelihood ·
Estimators · Generalized linear mixed models · Decision making

1 Introduction

Generalized linear mixed models (GLMMs) are variations of generalized lin-
ear models (GLMs) that include unobservable factors as extra components of
variability. As a consequence, they have a variety of applications and practi-
cal relevance [3,4,12,16]. Typically, unobserved effects are handled by including
random effects in the predictor of the generalised linear model. The marginal
likelihood function of the GLM is then derived by integrating the likelihood of
another GLM with regard to the mixing distribution, which is the anticipated
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distribution of the random effects. While GLMMs are a robust family of sta-
tistical models, their practical use has been constrained by the complexity of
the likelihood function. As a result, numerous techniques based on analytical
approximations to the probability have been developed. In the context of this
paper, we provide one distinct implementation of the Monte Carlo EM algorithm
in which the intractable integral at the E-step (our S-step) is evaluated using
simulation approaches. The first technique employs simulated random samples
from the precise conditional distribution of the random effects vector u given the
data y, which was derived by rejection sampling using the marginal distribution
of u as the candidate distribution.

2 Related Work

Sampling is a crucial process across every discipline. With random sampling as
indicated in [14], elements are taken in a probabilistic way for further process-
ing. The underlying distribution of data is although hard to estimate requiring
more accurate models. The capacity of conventional generalised linear models to
accommodate non-Gaussian distributions and non-linear link processes is com-
bined with the ability of classic (Gaussian) mixed models to express complicated
dependent structures using random components. As a result, GLMMs appear to
be well suited for many applications [1,5,6,16]. To be effective, GLMMs need
more inference tools than ordinary statistical models.

For example, when doing probability inference, conditional probability values
must be considered. Other integration simplifications used in conventional Gaus-
sian mixed models (e.g., defining a Gaussian distribution on Gaussian random
components that results in a Gaussian marginal distribution) are not applica-
ble to GLMMs. The literature discusses several interpretative techniques, for
example, [3,17] and [15] for a full study comparing different methods.

Many complicated stochastic systems may be simulated using Markov chain
Monte Carlo [8,11,18]. Integrals may be calculated via simulation for various sta-
tistical inferences while there is a lot of study on Bayesian inference [2,7,8]. To
describe stochastic processes, Markov chain Monte Carlo is a general-purpose
technique that has been proved to be successful for sampling across difficult
geometric objects [13] while it is also employed for probability inference. Sev-
eral Monte Carlo approximation techniques have been created for complicated
stochastic processes such as Markov random fields (Gibbs distributions) utilised
in spatial statistics. One method is to use Monte Carlo simulations [9,10,21].
Another is to use stochastic models [19] and third, the likelihood situation [20].
Only the first allows for quick parametric bootstrapping and simulation experi-
ments using a single Monte Carlo sample.



MLE on MCMC Sampling Algorithms for Decision Making 347

3 Methodology

3.1 Problem Definition

In this paper a clustering issue is examined. Assume there are n items, each of
which has a binary answer of type:

Yij = 0, 1, for i = n, . . . , 1, for j = n, . . . , T (1)

where n signifies all observed variables and T denotes the observation time. Typ-
ically, the time of observation varies across components; as a consequence, time
points may also vary. For the purposes of this paper, we will assume that all ele-
ments are exactly equivalent in length and time points. Additionally, we suppose
that these topics fall into two separate clusters. The dependent expectation of a
variable for each cluster, responds as follows:

P1,ij = E(Yij |Ui,X1,ij , Z1,i) = f−1(β1 · X1,ij + Z1,i)

P2,ij = E(Yij |Ui,X2,ij , Z2,i) = f−1(β2 · X2,ij + Z2,i)
(2)

where cluster membership is denoted by U , and fixed and random effects, are
denoted by Xc,ij and Zc, i, (c = 1, 2) respectively. The function of connection is
specified as:

f−1(x) =
exp(x)

1 + exp(x)
(3)

Due to the fact that U is often unknown in a typical clustering scenario, it is
treated as an effect of randomness. In (2), u = 1 for P1,ij while u = 2 for P2,ij .
For randomness, it is assumed:

Zc,i ∼ N(0, σ2
c ),P(U) = 1 (4)

Thus, Ω = {β1, β2, σ1, σ2, π1} is the parameter to be assessed. By interpreting
random effects as data missing, the function of likelihood for the whole set of
data may be represented as in (5).

L(Ω|Yij , Ui, ZUi,i) =
n∏

i=1

2∏

c=1

{πcfc(Zc,i)[
T∏

j=1

fc(Yij |Zc,i)]}wic (5)

where the normal distribution fc(Yij |Zc,i) = P
Yij (1 − Pij)1−Yij and fc(Zc,i)

signifies the density of it. The dummy variable wic is associated with Ui , hence

wic =

{
1, element belongs to cluster c

0, otherwise
(6)
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3.2 Generalized Linear Mixed Models (GLMMs)

Given the simulation parameters: n, T , β1, β2, π1, σ1, σ2, we can obtain,
Observed variables as Y

Y =

⎡

⎢⎢⎢⎣

Y11 Y12 · · · Y1T

Y21 Y22 · · · Y2T

...
...

. . .
...

Yn1 Yn2 · · · YnT )

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

Y1

Y2

...
Yn

⎤

⎥⎥⎥⎦

Additional unobserved or unobservable variables as U , Z

U =

⎡

⎢⎢⎢⎣

U1

U2

...
Un

⎤

⎥⎥⎥⎦ ,Z =

⎡

⎢⎢⎢⎣

ZU1,1

ZU2,2

...
ZUn,n

⎤

⎥⎥⎥⎦

Explanatory variables (fixed effect) as X

X =

∣∣∣∣∣∣∣∣∣

XU1,11 XU1,12 · · · XU1,1T

XU2,21 XU2,22 · · · XU2,2T

...
...

. . .
...

XUn,n1 XUn,n2 · · · XUn,nT

∣∣∣∣∣∣∣∣∣

Computing Log-Likelihood. Given the necessary parameters for each ele-
ment of Ω, the enhanced logged likelihood might be expressed as follows.

L(Ω|Yij ,Ui,Z1,i,Z2,i) =
n∏

i=1

2∏

c=1

⎧
⎨

⎩πcfc(Zc,i)[
T∏

j=1

fc(Yij |Zc,i)]

⎫
⎬

⎭

ωic

= exp

{
n∑

i=1

2∑

c=1

ωic

[
lnπc − ln(

√
2πσc) − Z2

c,i

2σ2
c

+
T∑

j=1

[Yij lnP
(c)
ij + (1 − Yij)ln(1 − P

(c)
ij )]

]}

(7)

The logged likelihood could be expressed as in (8).

l =
n∑

i=1

2∑

c=1

ωic

[
lnπc − ln(

√
2πσc)− Z2

c,i

2σ2
c

+
T∑

j=1

[Yij lnP
(c)
ij +(1−Yij)ln(1−P

(c)
ij )]

]

(8)
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The result of (8) can be expressed in a simpler form as in (9)

l(Ω|Y,U,Z) =
n∑

i=1

ln f(Ui,ZUi,i
)(Ui, ZUi,i|πc, σ1, σ2)

+
n∑

i=1

T∑

j=1

ln fYij |(Ui,ZUi,i
)(Yij |(Ui, ZUi,i), β1, β2)

=� ln f(U,Z)(U,Z|πc, σ1, σ2) + ln fY|(U,Z)(Y|U,Z, β1, β2)

(9)

3.3 Monte Carlo Simulation Maximization

Simulation Maximization Algorithm. To perform maximization on the
Monte Carlo method, the augmented logged likelihood must be approximated
first. By taking expectation of U and Z given Y under the current estimate of
the parameters Ω(m), the expected augmented logged likelihood could be defined
as:

Q(Ω|Ωm) =

E(l|Yij , Ω
(m)) =

1
N

N∑

k=1

n∑

i=1

2∑

c=1

ωic

[
lnπc − ln(

√
2πσc) − Z2

i,k

2σ2
c

+
T∑

j=1

[Yij lnP
(c)
ij + (1 − Yij)

ln(1 − P
(c)
ij )]

]
.

(10)

Notice that in the expected log-likelihood, Ω(m) could be decomposed into sep-
arate component as in (11).

Q(Ω,Ω(m)) = E(U,Z)|(Y,Ω(m)) ln f(U,Z)(U,Z|πc, σ1, σ2)

+ E(U,Z)|(Y,Ω(m)) ln fY|(U,Z)(Y|U,Z, β1, β2)

=� P (Ω,Ω(m)) + R(Ω,Ω(m))

(11)

3.4 Monte Carlo Integration

In order to compute the integral above, we use Monte Carlo Integrating to
approximate it. Suppose that {(U(k),Z(k), k = 1, 2, · · · ,K)} i.i.d∼ f(U,Z|Y)

(U,Z|Y), Ω) and we sample m times to approximate. Based on Mean Value
Method we get:

Q
(
Ω,Ω(m)

)
≈ 1

m

m∑

k=1

∑

i=1,c=U(k),i

[
ln πc − 1

2
ln

(
2πσ2

c

) − Z2
c,i

2σ2
c

+
T∑

j=1

[Yij (βcXc,ij + Zc,i) − ln (1 + exp (βcXc,ij + Zc,i))
] (12)
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Maximum Likelihood Estimators. To calculate the maximum likelihood
estimators the partial derivatives must be approximated whose parameters are
given by (13), (14), (15).

∂Q(Ω,Ω(m))
∂π1

=
1
m

m∑

k=1

n∑

i=1

I{U(k),i,i=1}
1
π1

− 1
m

m∑

k=1

n∑

i=1

I{U(k),i,i=2}
1

1 − π1
(13)

∂Q(Ω,Ω(m))
∂σ2

c

=
1
m

m∑

k=1

n∑

i=1

I{U(k),i=c}(− 1
2σ2

c

+
Z2
(k),c,i

2σ4
c

) (14)

∂Q(Ω, Ω(m))

∂βc
=

1

m

m∑

k=1

n∑

i=1

I{U(k),i=c}
T∑

j=1

[
YijXc,ij − Xc,ij exp(βcXc,ij + Z(k),c,i)

1 + exp(βcXc,ij + Z(k),c,i)

]
(15)

By setting the above partial derivatives to 0, we get the maximum likelihood
estimators as in (16).

π̂1 =
1

mn

m∑

k=1

n∑

i=1

I{U(k),i=1} σ̂c =

√√√√
∑m

k=1

∑n
i=1 I{U(k),i=c}Z2

(k),c,i∑m
k=1

∑n
i=1 I{U(k),i=c}

(16)

To compute the MLE of βc, we use direct numerical maximization proposed by
Newton-Raphson Method. The second order partial derivative of βc is denoted
as in (17).

∂2Q(Ω,Ω(m))
∂β2

c

= − 1
m

m∑

k=1

n∑

i=1

I{U(k),i=c}
T∑

j=1

X2
c,ij exp(βcXc,ij + Z(k),c,i)

(1 + exp(βcXc,ij + Z(k),c,i))2
(17)

3.5 Markov Chain Sampler

Since it difficult to sample directly from a multivariate distribution of the type
f(U,Z|Y)(U,Z|Y), Ω), we can use Gibbs Sampling, a Markov chain Monte Carlo
(MCMC) algorithm to obtain a sequence of observations which are approximated
from the multivariate distribution. First, we need to calculate the conditional
distributions (18) and (19).

f(Ui,Z(Ui,i)|Yi)(Ui, ZUi,i|Yi, Ω)

fZ(Ui,i)|Yi
(ZUi,i|Yi, Ω)

= fUi|(ZUi
,i,Yi)(Ui|ZUi,i,Yi) (18)

f(Ui,Z(Ui,i)|Yi)(Ui, ZUi,i|Yi, Ω)

fUi|Yi
(Ui|Yi, Ω)

= fZUi,i
|(Ui,Yi)(ZUi,i|(Ui,Yi)) (19)

Then, suppose that (U(k),i, Z(k),U(k),i,i) is the i-th component of the k-th
sample, we want to draw the i-th component of the (k + 1)-th sample. We draw

U(k+1),i ∼ fUi|ZUi,i
,Yi

(u|ZUi,i,Yi, Ω) (20)
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Algorithm 1. MCMC incorporated Metropolis-Hastings
1: for i = 1, · · · , n do
2: Initialize(U(0),i, Z(0),1,i, Z(0),2,i)
3: for c=1:2 do
4: k ← 0
5: for k do=1:K2

6: Draw z∗ ∼ fc(z|Ω)
7: Accept z∗ as Z(k+1),c,i with probability Ak,Yi

(z, z∗); otherwise,
retain the original Z(k),c,i

8: end for
9: Burn-in procedure and let the last K + 1 samples be the final samples

{Z(k),c,i, k = 0, 1, · · · ,K}
10: end for
11: k ← 0
12: for k=1:K do
13: Draw U(k+1),i ∼ fUi|ZUi

,i,Yi
(u|ZUi

, i,Yi, Ω)
14: end for
15: Let the last m samples be the final samples {U(k),i, k = 0, 1, · · · ,K}
16: end for
17: Burn-in procedure and return the m samples {(U(i),i, Z(i),1,i, Z(i),2,i), k =

0, 1, · · · ,m}

Z(k+1),U(k+1),i,i (21)

where (21) can be approximated as:

fZUi,i
|Ui,Yi

(z|Ui,Yi, Ω). (22)

Let (23) be a candidate distribution for (22).

hZU(k),i,i
(z) (23)

Metropolis-Hastings Algorithm. To sample (21) from (22), we use (23).
Since the candidate distribution should be similar to (22), we can choose
hZU(k),i,i

(z) = fUi
(z|Ω) and the acceptance function is

Ak,Yi
(z, z∗) = min

[
1,

fZUi,i
|Ui,Yi

(z∗|Ui,Yi, Ω)fUi
(z|Ω)

fZUi,i
|Ui,Yi

(z|Ui,Yi, Ω)fUi
(z∗|Ω)

]
(24)

where
fZUi,i

|Ui,Yi
(z∗|Ui,Yi,Ω)fUi

(z|Ω)

fZUi,i
|Ui,Yi

(z|Ui,Yi,Ω)fUi
(z∗|Ω) can be expressed as,

fZUi,i
|Ui,Yi

(z∗|Ui,Yi, Ω)fUi
(z|Ω)

fZUi,i
|Ui,Yi

(z|Ui,Yi, Ω)fUi
(z∗|Ω)

= exp

[ T∑

j=1

Yij(z
∗ − z)

] T∏

j=1

1 + exp(βiXij + z)

1 + exp(βiXij + z∗)
(25)

We begin our Gibbs sampler incorporated a Metropolis-Hastings step as in
Algorithm 1.
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Monte Carlo Simulation Maximization. Unfortunately, we do know the
f(U,Z)|Y(U,Z|Y, Ω), so we use

f(U,Z)|Y(U,Z|Y, Ω(m)) (26)

in the (m + 1)-th step from 2 to approximate the distribution so as to generate

{(U(k), Z(k)), k = 1, 2, · · · ,m} i.i.d∼ f(U,Z)|Y(U,Z|Y, Ω(m)) (27)

The Monte Carlo Simulation-Maximization Algorithm we use in every exper-
iment is given in Algorithm 2. Moreover, a flowchart of the proposed method is
shown in Fig. 1.

Fig. 1. Flow chart of the proposed method.

Algorithm 2. Monte Carlo Simulation Maximization (Proposed)

1: Start with the initial value for estimator Ω(0). Set m=0.
2: Simulation-step:
3: a. Generate m samples {(U(i),i, Z(i),1,i, Z(i),2,i), k = 0, 1, · · · ,m} from

fZUi,i
|Ui,Yi

(z|Ui,Yi, Ω) throughAlgorithm 1
4: b. Calculate the partial derivatives of Q(Ω,Ω(m)), the Monte Carlo estimator

for every parameters.
5: Maximization-step
6: Ω(m+1) ← arg maxΩ Q(Ω,Ω(m))
7: m ← m + 1
8: Repeat step 2-6 until convergence and then output the maximum likelihood

estimators Ω(m).
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4 Experimental Results

For Yij = 0, 1, for i = n, . . . , 1, for j = n, N = 100, we start our experiments
by setting the initial values of the parameter Ω = {β1, β2, σ1, σ2, π1}. For the
first experiment we set Ω as β1 = 1.3, β2 = 1.3, σ1 = 2.0, σ2 = 10, π1 = 0.6.
These values are set after several experiments as they make the model operate
smoothly. We perform variable step-size; we start the proposed Monte Carlo
estimation with a modest sample size and gradually raise our sampling intervals
as the Simulation Maximization (SM) iterates. We perform Gibbs sampling in
each SM iteration. In each experiment, we repeat the SM iteration process for
50 times. We conduct 1000 tests with various random seeds and mark down
the results of the first 100 experiments as well as the Mean Squared Error of
the 1000 experiments. The results of the simulation (step 2 of Algorithm 2) are
shown in Table 1. The aim here is to meet convergence for all values as close
as possible in a relative short period of time. Next, we use the results derived
from the previous process to perform the maximization step of 2. The results
are shown in Table 1. Our convergences are pretty good, as all parameters are
converged in less than 50 steps, which costs about 1 min.

We monitor the convergence of the algorithm by plotting Ω∗ vs. iteration
number i and the plot reveals random fluctuation about the line Ω = Ω∗. So,
we may continue with a large value of m to decrease the system variability. In
Figs. 2, 3, 4 the convergence of β, σ and π is shown. The blue line represents the
actual value while the orange represents the converged value.

Fig. 2. Convergence of β. (Color figure
online)

Fig. 3. Convergence of σ. (Color figure
online)
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As depicted in Figs. 2, 3 the converged value is relatively close to the true
value at each given point across all 50 iterations while at some points they are
even identical. Similarly the convergence of σ is relatively close to the true value
across all iterations. Likewise, the convergence of π is close to the actual value
as with the two previous results.

Table 1. True values and initial values vs converged values.

Variables True value Initial value Converged value

β1 1.3 0 1.2953680
β2 1.3 0 1.3076125
σ1 2 1 1.987342
σ2 10 5 9.132040
π1 0.6 0.8 0.480500

Fig. 4. Convergence of π. (Color figure
online)

Fig. 5. MSE of parameters.

The simulations of the proposed algorithm are summarized in Table 2. The
results show satisfactory performance across all five parameters of Ω.
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Table 2. Simulations for β1 = 1.3, β2 = 1.3, σ1 = 2.0, σ2 = 10, π1 = 0.6, N = 100.

N β1 β2 σ1 σ2 π1

100 1.2993 1.3045 1.9676 9.5722 0.4730

200 1.2983 1.3039 1.9675 9.5673 0.4731

300 1.2982 1.3059 1.9691 9.6156 0.4747

400 1.2982 1.3071 1.9681 9.6091 0.4744

500 1.2985 1.3059 1.9692 9.6096 0.4748

600 1.2984 1.3057 1.9683 9.6032 0.4746

700 1.2987 1.3054 1.9695 9.6325 0.4752

800 1.2985 1.3051 1.9683 9.6270 0.4749

900 1.2982 1.3047 1.9669 9.6238 0.4746

1000 1.2982 1.3051 1.9668 9.6233 0.4744

4.1 Evaluation

To evaluate the proposed method we use the Mean Squared Error Metric. The
MSE is calculated as in (28).

MSEθ =
1
N

N∑

n=1

(θ(n) − θ̂(n))2 (28)

where θ ∈ Ω, θ(n) is the true MLE of θ in the n-th experiments and θ̂(n) is the
estimator of θ(n). The MSE score of β1, β2, σ1, σ2 and π is shown in Fig. 5.
Generally MSE should be within the value range of 0–2 whereabouts zero value
indicates that the model is perfect and the value of two indicates that the per-
formance is marginally acceptable.

5 Conclusions and Future Work

In the context of this paper, the basic functions of MCMC methods were shown
as well as the inner workings of these methods along with Gibbs sampling and a
proposed method for Monte Carlo Simulation Maximization. The results show
that the proposed method performed smoothly using the estimators created by
our system. In respect to time, the system was capable to sample elements in a
quite speedy way (approximately 1 min) for up to 1000 experiments. The MSE
for 1000 experiments was also in relevantly low levels (approximately 0.5 for
π) while the parameters β1, β2, σ1, σ2 and π1 were simulated efficiently and
effectively.

Future directions of this work include the integration of the proposed algo-
rithm with a Bayesian Neural Network to better highlight the findings in a more
accurate yet speedy way and to approximate the underlying evolving distribu-
tions in a more steady way. Another future scope is to increase the sampling rates
and to reduce the MSE as low as possible compared to the existing method. One
last but significant improvement could be the reduction of the difference among
the real and estimated coefficients.
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