
An Overview of MCMC Methods:
From Theory to Applications

Christos Karras1(B) , Aristeidis Karras1 , Markos Avlonitis2 ,
and Spyros Sioutas1

1 Computer Engineering and Informatics Department, University of Patras,
26504 Patras, Greece

{c.karras,akarras,sioutas}@ceid.upatras.gr
2 Department of Informatics, Ionian University, 49100 Corfu, Greece

avlon@ionio.gr

Abstract. Markov Chain Monte Carlo techniques are used to generate
samples that closely approximate a given multivariate probability dis-
tribution, with the function not having to be normalised in the case of
certain algorithms such as Metropolis-Hastings. As with other Monte
Carlo techniques, MCMC employs repeated random sampling to exploit
the law of large numbers. Samples are generated by running a Markov
Chain, which is created such that its stationary distribution follows the
input function, for which a proposal distribution is used. This approach
may be used for optimization tasks, for approximating solutions to non-
deterministic polynomial time problems, for estimating integrals using
importance sampling, and for cryptographic decoding. This paper serves
as an introduction to the MCMC techniques and some of its applications.

Keywords: Metropolis-hastings · Markov Chains · Monte Carlo ·
MCMC methods · Gibbs sampling · Rejection sampling · Bayesian
statistics

1 Introduction

Sampling across distributions is a significant concept in statistics, probability,
systems engineering, and other fields that make use of stochastic models ([2,8,
11,20,21]). Although sampling has long history, modern methods such as event
detection and pattern recognition often rely to reservoir sampling methods as in
[15] whereabouts the elements derived from a data stream are placed within a
reservoir for further processing. Sampling from a multidimensional distribution
is required for a variety of purposes, most notably to estimate sums and to
approximate integrals that are highly insoluble analytically. However, typical
sampling techniques such as rejection sampling are inadequate for this task, since
they do not scale well with increasing dimensions, as the state space expands
exponentially and hence rejection rates increase. Markov Chain Monte Carlo

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
I. Maglogiannis et al. (Eds.): AIAI 2022 Workshops, IFIP AICT 652, pp. 319–332, 2022.
https://doi.org/10.1007/978-3-031-08341-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08341-9_26&domain=pdf
http://orcid.org/0000-0002-4253-7661
http://orcid.org/0000-0002-4632-6511
http://orcid.org/0000-0002-8575-0358
http://orcid.org/0000-0003-1825-5565
https://doi.org/10.1007/978-3-031-08341-9_26

320 C. Karras et al.

(MCMC) techniques may be employed, given that their advanced variants are
ideally suited for sampling from high-dimensional space. A brief introduction to
MCMC methods is provided here to familiarise readers with the concept.

Moreover, an introduction to the mathematical underpinnings of Markov
Chains is provided in order to aid in the comprehension of MCMC techniques.
Following that, the fundamental concept behind Monte Carlo techniques is
described. Based on this foundation, these two fundamental principles may be
merged to form MCMC, with a particular emphasis on the popular Metropolis-
Hastings algorithm (MH) [4] and the specific case of Gibbs sampling [7]. Fol-
lowing that, various elements such as parameter adjustment and convergence
measurement are covered.

Finally, applications of these techniques are shown and described in further
detail. It is feasible to decrypt encrypted documents [3], optimize functions [17],
estimate integrals using generalized liner mixed models [22], and discover approx-
imate solutions to non-deterministic polynomial-time (NP) hard problems using
the Metropolis-Hastings algorithm [23].

2 Markov Chains

Stochastic processes are a series of random variables (Xt)t∈T , that describe the
states of a potentially infinitely vast state space S of a system at various points
in time t. Only discrete time steps are considered in this case, hence t ∈ N0.

Xt-1 Xt Xt+1

Fig. 1. A random variable Xt only depends on its immediate predecessor Xt−1, not
on any others. With this Markov property, the structure of the dependence graph
resembles a chain, hence the name Markov Chain.

Markov Chains are used to simulate stochastic processes in which the state
of the next time step is determined by a small number of prior time steps. Only
the final one is relevant in this paper, as seen in Fig. 1. The manner in which
that condition was attained has no bearing on the subsequent state. This lack
of memory in stochastic systems is often referred to as the Markov property:

∀t ∈ N0,∀i, j, k, . . . ∈ S :

Pr [Xt+1 = j | Xt = i,Xt−1 = k, . . .] = Pr [Xt+1 = j | Xt = i] (1)

A Markov Chain is composed of a collection of states S, a start distribution
q(0), and the accompanying transition probabilities pi,j = Pr [Xt+1 = j | Xt = i]

An Overview of MCMC Methods: From Theory to Applications 321

from one state to the next at a time step of t. Take note that transition proba-
bilities are independent of time t in this case, implying that temporal invariance
is true:

∀t, t′ ∈ N0 : Pr [Xt+1 = j | Xt = i] = Pr [Xt′+1 = j | Xt′ = i] (2)

At each time step t, the stochastic process may be in just one state, which
does not have to be known. Thus, the distribution q(t) is introduced as a measure
of probability for states, where q

(t)
i is the likelihood that the stochastic process

is in state i ∈ S at time step t:

q
(t)
i = Pr [Xt = i] (3)

Thus, to satisfy the conditions for a probability distribution, ∀i ∈ S,∀t ∈
N0 : q

(t)
i ≥ 0 and Σ

i∈Sq
(t)
i

= 1, or
∫

i∈S
q
(t)
i di = 1, respectively. For the sake of

simplicity, the following computations will disregard the scenario when S is not
finite. Analogously, the continuous case follows.

Thus, assuming S is finite, the transition probabilities between states i and j
may be expressed as a matrix P := (pi,j) and the distributions as vectors q(t) =(
q
(t)
1 . . . q

(t)
n

)
∈ R

|S|. As a result, the probabilities for the next state may be

determined using the current probabilities q
(t)
i and the transition probabilities

pi,j :

q
(t+1)
j = Pr [Xt+1 = j]

= Σi∈S Pr [Xt+1 = j | Xt = i] × Pr [Xt = i]

= Σi∈Spi,j × q
(t)
i

(4)

Equivalently this can be expressed using Matrix notation: q(t+1) = q(t) × P .
Distributions π, which do not change after another iteration, are called sta-

tionary distributions: π = q(t+1) = q(t) or π = π × P .
If it is feasible to transition from any state to any (other) state, formally

∀(i, j) ∈ S2,∃n ∈ N : p
(n)
i,j > 0, the Markov Chain is said to be irreducible. This

is true if the state graph of the Markov Chain has a high degree of connectivity.
For irreducible Markov Chains a unique stationary distribution π exists.

Another sufficient condition for a unique π is satisfying detailed balance as in [1]:

∀i, j ∈ S : πi × pi,j = πj × pj,i (5)

A state i ∈ S is said to be aperiodic if it is feasible to return to a state i
to it in any arbitrary number of steps after leaving it, as long as the number is
sufficiently big, hence:

∃n0 ∈ N : ∀n ∈ N, n ≥ n0 : p
(n)
ii > 0 (6)

For instance, if a state i has a loop around itself, indicating that pi,i > 0, it
is aperiodic.

322 C. Karras et al.

If ∀i ∈ S, i is aperiodic and irreducible, it is said to be ergodic. Regardless of
the initial distribution q(0), an ergodic chain always converges to π. Formally:

lim
t→∞ q(t) = π (7)

a b

c

0.2

0 .4

0 .7

0 .8

0 .6

0 .3

Fig. 2. This is a graphical example of a Markov Chain with three states a, b and c. The
edges are annotated with the transition probabilities. The probabilities of the outgoing
arrows of each state sum up to 1.

An example of a graphical depiction of an ergodic Markov Chain with three
states as nodes and a transition matrix as edges is given in Fig. 2.

P =

⎛

⎝
0.2 0 0.8
0.4 0 0.6
0.7 0.3 0

⎞

⎠

3 Monte Carlo Simulations

Monte Carlo simulations are probabilistic processes that use repeated random
sampling and the law of large numbers to numerically approximate solutions to
complex problems. According to [12], given a random variable X, an ε > 0 and a
δ > 0, the law of large numbers states: If n ≥ Var[X]

εδ2 and X1, · · · ,Xn are random
variables with the same distribution as X,

Pr
[
X1 + · · · ,+Xn

n
− E[X] ≥ δ

]

≤ ε (8)

Thus, for any arbitrarily tiny positive precision and error probability, the
expected value of X may be computed with a large enough n.

A well-known example is the approximation of the circular number π by
sampling n times from a square of uniform distribution with length a. Thus, the
number of samples c contained inside a circle with a radius of a

2 and centred in
the centre of the square is tallied. Pythagoras’ theorem may be used to assess

An Overview of MCMC Methods: From Theory to Applications 323

if a sample (x, y) is included inside that circle. With the area of the square
Asquare = a2 and the area of the circle Acircle = π × (

a
2

)2, the ratio of the areas
equals the chance that a sample will be in the circle. Hence,

lim
n→∞

c

n
= E

[c

n

]
= Σn

i=1

Pr[sample i in the circle]
n

=
Acircle

Asquare
=

π

4
(9)

Thus, for sufficiently large n (at-least 1000 iterations), we have:

π ≈ 4 × number of samples in circle
total iterations

=: π̂ (10)

The approximation of π is done by counting samples inside the circle. The
result is shown in Fig. 3.

Fig. 3. Approximation of π̂ by counting samples inside the circle. For c = 789 and
n = 1000, π̂ ≈ 3.156.

Monte Carlo techniques may be used with Markov Chains to generate random
samples that adhere to a specified probability distribution p∗. The fundamental
concept behind so-called Markov Chain Monte Carlo (MCMC) approaches is to
construct a Markov Chain with a stationary distribution π that closely approx-
imates the desired probability distribution. Following construction, the Markov
Chain is executed and the visited states (or a portion of them) are returned as
samples. Often, these distributions p∗ are complex, and the procedures for build-
ing them use basic (proposal) distributions, such as a Gaussian or an unitary
distribution [9].

324 C. Karras et al.

4 Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm is a Markov chain Monte Carlo (MCMC) method
for obtaining a sequence of random samples from a probability distribution from
which direct sampling is challenging. The Metropolis-Hastings algorithm, which
serves as the foundation for many MCMC approaches, is one prominent method
for creating such a Markov Chain that follows a particular probability distri-
bution. It was first published in 1953 by Metropolis, who used it for computa-
tions in Physics [18] while Hastings introduced it in 1970 as an extension to the
Metropolis algorithm [11].

4.1 Mathematical Underpinnings

Given any function p : R
n → R

+
0 , Metropolis-Hastings delivers samples that

follow the distribution specified by that function [19]. Notably, there is no need
that p has to be normalised, which means that

∫
x∈Ω

p(x)dx = 1 does not have
to hold. The samples continue to conform to the normalised probability dis-
tribution function p∗(x) = p(x)

Z , where Z is the normalising constant, so that
∫

x∈Ω
p(x)
Z dx = 1. Take note that in this situation, x =

(
x1 · · · xn

)
is not a scalar,

but a vector in case of multivariate distributions.
The Markov Chain is produced implicitly since no transition matrix is ever

computed explicitly and the suggested next state x′ and its transition probability
are calculated on demand. Given a state x(t) the algorithm offers a subsequent
state x′ by sampling from a proposal distribution q

(
x′ | x(t)

)
. The proposal

distribution q must assign a probability greater than zero to states in the target
distribution p that has a probability greater than zero. A proposal x′ is accepted
as next state

(
x(t+1) := x′) with probability:

min

(

1,
p (x′) × q

(
x(t) | x′)

p
(
x(t)

) × q (x′ | x)

)

(11)

and discarded otherwise, so that the current state will also be the next state(
x(t+1) := x(t)

)
.

The Metropolis-Hasting pseudo code is described in algorithm 1. The pri-
mary distinction between Hastings and the Metropolis method is that whereas
Metropolis employed only symmetric proposal distributions, Hastings devised
the so-called Hastings adjustment, which allowed for non-symmetric proposal
distributions as well.

An Overview of MCMC Methods: From Theory to Applications 325

Algorithm 1. Metropolis-Hastings Method
1: Initialize x0

2: for t = 0, 1, 2, . . . do
3: x := x(t)

4: sample x′ ∼ q (x′ | x)

5: acceptance probability α :=
p(x′)·q(x|x′)
p(x)·q(x′|x) r := min(1, α)

6: sample u ∼ U(0, 1), where U is unitary distribution

7: new sample x(t+1) :=

{
x′ if u < r

xt otherwise

8: end for

It can be proven that the resultant stationary distribution follows p∗(x), since
it meets the detailed balancing criterion indicted in equation (5).

This may be readily demonstrated in the situation when x(t) = i and q
suggests a j 	= i as in [1]. The proof of the preceding assumption is as follows:

Pr
[
x(t) = i

] × Pr
[
x(t+1) = j | x(t) = i

]

= Pr
[
x(t) = i

] × Pr
[
j is proposed | x(t) = i

]

×Pr
[
j is accepted | x(t) = i

]

= p∗(i) × q(j | i) × min
(
1, p(j)×q(i|j)

p(i)×q(j|i)
)

= p∗(i) × q(j | i) × min
(
1, p∗(j)×q(i|j)

p∗(i)×q(j|i)
)

= min (p∗(i) × q(j | i), p∗(j) × q(i | j))
= min (p∗(j) × q(i | j), p∗(i) × q(j | i))

= Pr
[
x(t) = j

] × Pr
[
x(t+1) = i | x(t) = j

]

(12)

Additionally, the constructed Markov Chain is irreducible and ergodic, the
resultant distribution is unique, thus convergence to p∗ is granted as in [19].

4.2 Optimizations and Challenges

Typically, as with the original Metropolis method, a symmetrical proposal dis-
tribution q is selected, of q (x′ | x) = q (x | x′) form. Frequently, a Gaussian
distribution with constant or adaptive variance is utilised, centred on x so that:

q (x′ | x) ∼ N (x′ | x,Σ) (13)

The covariance matrix Σ must be optimized to produce acceptable acceptance
rates that are neither too low (which results to a lot of duplicates) nor too
high where the state space is explored very slowly). Murphy suggests aiming for
acceptance rates of between 25% and 40% in [19].

However, the algorithm is not perfect or fine-tuned. Rather of being indepen-
dent, as needed for samples, the states are strongly connected, or auto-correlated.
Depending on the proposal function, states close i are more likely to be sampled
than others. One solution is to return just a sample after every n-th step, which

326 C. Karras et al.

is termed thinning. This does not totally cure the issue, but it does reduce the
association. Another issue is that the first samples heavily rely on the starting
condition (or distribution). There is a “burn-in” phase when no samples are
created for the first k steps. Forgetting the starting state assures the distribu-
tion of the Markov Chain is close to the true distribution p∗. For tiny Markov
Chains that meet certain criteria of proximity to the true distribution some k
can be computed. For larger Markov Chains, heuristics are used instead as in
[14]. A trace plot may be made by running many chains. If the plots overlap and
converge, the chain has mingled.

Tuning these parameters n and k is difficult, as there are trade-offs: The
higher they are, the more steps are not considered, so it takes more steps and
therefore time to create samples, which reduces computational efficiency. The
lower they are, the more correlated and therefore of worse quality these samples
are. To get sufficient samples, run numerous chains and sample their states.
Murphy offers three 100.000-step chains, with half discarded and the remainder
sampled. The more dimensions x has, the more likely suggested samples will be
rejected. Bishop suggests picking the Gaussian scale based on the least standard
deviation of each dimension, as seen in Fig. 4.

Fig. 4. A MH two-dimension function (red ellipse). A Gaussian with standard deviation
ρ ∼ σmin is used as proposal distribution to avoid high rejection rates (blue circle) [1].
(Color figure online)

4.3 Gibbs Sampling

Gibbs Sampling, as explained in algorithm 2, is a common specific instance of
MH that should not be overshadowed. The notion is that at each step, one (or
a small subset) of the components i is updated by sampling from everything
except i and replacing it with the most current values. Thus, to update the
first component of x(t), x

(t+1)
1 is sampled from p

(
x

(t+1)
1 | x

(t)
2 , . . . , x

(t)
n

)
. This is

essentially MH, where every proposal is approved since α = 1 is always true [19].
This simplifies the collection of samples, but their auto-correlation is increased.

An Overview of MCMC Methods: From Theory to Applications 327

Algorithm 2. Gibbs Sampling Method
1: Initialize x0

2: for t = 0, 1, 2, . . . do

3: sample: x
(t+1)
1 ∼ p

(
x
(t+1)
1 | x

(t)
2 , . . . , x

(t)
n

)
4: x

(t+1)
2 ∼ p

(
x
(t+1)
2 | x

(t+1)
1 , x

(t)
3 , . . . , x

(t)
n

) ...

5: x
(t+1)
j ∼ p

(
x
(t+1)
j | x

(t+1)
1 , . . . , x

(t+1)
j−1 , x

(t)
j+1, . . . , x

(t)
n

) ...

6: x
(t+1)
n ∼ p

(
x
(t+1)
n | x

(t+1)
1 , . . . , x

(t+1)
n−1

)
7: end for

5 Applications of MCMC Methods

MCMC methods have big advantages over other sampling methods like rejection
sampling, as they scale well with higher dimensions. Therefore, sampling with
MH has many applications, several of which are be presented in this paper. In
this section the three major applications of MCMC methods we focus on are:
integral estimation, simulated tempering and text decryption.

5.1 Estimation of Integrals

Particularly in Physics, where the Metropolis method originated, many integrals
must be approximated, often with unknown normalisation factors for marginal
likelihood calculations in order to detect gravitational waves [10]. A multidimen-
sional integral may be estimated using Metropolis-Hastings [9]. For example,
estimating the value of the following integral:

s :=
∫

p(x) × f(x)dx = Ep[f(x)] (14)

with p being a normalized probability distribution. Then after using MH to
draw samples x(1), . . . , x(n) from p, s can be estimated by

ŝ =
1
n

n∑

i=1

f
(
x(i)

)
(15)

One can show that the expectation value is the same:

Ep[ŝ] = Ep

[
1
n

Σn
i=1f

(
x(i)

)]

=
1
n

Σn
i=1Ep

[
f

(
x(i)

)]
=

1
n

Σn
i=1s = s (16)

So given only a function g(x) and seeking an estimate for sg :=
∫

g(x)dx, a
factorization g(x) = f(x) × p(x) with p(x) being a valid probability distribution
has to be found. Alternatively, one can sample from any probability distribution
function h(x) and use a technique called importance sampling.

328 C. Karras et al.

As g(x) = h(x) × g(x)
h(x) the estimator can be modified:

ŝg =
1
n

Σn
i=1

g
(
x(i)

)

h
(
x(i)

) (17)

Again, Eh [ŝg] = sg holds. Ideally, h(x) is (up to a scaling factor) similar
to g(x) [9]. This proves to be powerful method for approximating any difficult
integral. To illustrate it, an integral of the two dimensional function

g (x1, x2) = e−x2
1−x2

2 (18)

will be estimated:

s :=
∫

x1∈(0,1),x2∈(0,1)

g (x1, x2) dx1dx2 (19)

For importance sampling, we set:

h (x1, x2) = (2 − x1 − x2) (20)

Note that:
∫

x1∈(0,1),x2∈(0,1)
h (x1, x2) dx1dx2 = 1 and h (x1, x2) > 0 for the

given integral. Thus h is a valid distribution function. Now, MH with a proposal
function q (x′ | x) ∼ N (x′ | x, 0.2) is used to draw 200 to 1000 samples from h.
The algorithm is initialized by sampling from a normal distribution centred at
(0, 0). This achieves an acceptance rate of 35.1% for n = 200 samples and 34.17%
for n = 1000 samples. Using the samples and equation (17), the approximation
results in ŝh ≈ 0.569. This is relatively accurate, as the exact value is s ≈ 0.5677.
A visualization can be found in Figs. 5 and 6. The z-value of a sample x is h(x)
The density of the samples is higher in regions with high h-values and low in the
others, as expected.

Fig. 5. MH on 200 samples. Fig. 6. MH on 1000 samples.

An Overview of MCMC Methods: From Theory to Applications 329

5.2 Simulated Tempering

However, MH may be utilised to solve optimization issues involving non-convex
functions when a global minimum must be established and conventional gradi-
ent descent algorithms fail because they get caught in one of the several local
minima [19]. To discover the minimum, one would use a distribution that assigns
a high probability to f values that are small. A popular option is the Boltzmann
distribution.

p(x) = e− f(x)
T (21)

Utilizing the Boltzmann distribution here the requirement is to have an
adjustable temperature T . This T value is lowered over time as Metropolis-
Hastings executes the chain using a process called simulated annealing. This
results in decreasing uphill movements over time, increasing the value of the
function. The states converge to the global minimum as the probability of the
chain being in the region with the greatest probabilities increases, without being
trapped in a local minimum. Thus, analogous to physics, although huge motions
are initially permitted to explore the state space, the system “cools down”
and converges. At the conclusion of the random walk, the best x observation
is returned. Once again, the starting temperature and the manner in which T is
lowered are tuneable. Figure 7 shows a representation of various temperatures.

Fig. 7. Plot of the Boltzmann function for a function at a high temperature, where
many areas have high values (left) and a low temperature, where only areas close to
the optimal receive high values (right) [19].

Simulated tempering techniques, such as MH, may be used not just to con-
tinuous functions in R

n, but also to discrete functions. This knowledge may be
used to provide estimates for a given Traveling Salesman Problem (TSP) opti-
mization [16]. TSP searches for the shortest route across a graph that visits each
node precisely once. As a result, the states of this issue are represented by path-
ways across the graph that pass through each node precisely once. The length
of these pathways added into the Boltzmann function is the function supplied
to MH, which is no longer a legitimate probability distribution. Proposals are

330 C. Karras et al.

formed by rearranging the order in which two (or more) nodes in a given route
are visited. This heuristic produces reasonable approximations, despite the fact
that there is no optimum solution to the otherwise NP-hard issue.

5.3 Text Decryption

Another notable example of MH is interpreting documents, such as jail prisoners’
secret code [6]. Given a text that has been ciphered by substituting other symbols
Y for the letters S in the underlying text, it is feasible to learn the inverse f of
the cypher function c : S → Y with remarkable accuracy.

By analysing the probabilities of each character y following another x in
commonly used English texts, one may establish a decent estimate of a decode
plausibility of a decipher function. This pre-supposes that the provided text
is comparable to those, i.e. that the same language and proficiency level are
employed. As a result, a transition matrix can be learned:

mx,y = Pr[next character is y | current character is x] (22)

Using this matrix M, a measure of plausibility for a decipher function f can
be defined as:

Pl(f) =
∏

i

mf(si),f(si+1) (23)

Pl is entered into Algorithm 1 as the probability function. The proposal
f

′
is created from state f by randomly swapping two assignments in f . As a

result, the proposal distribution is symmetrical, and the acceptance probability
decreases to:

min
(

1,
P l (f ′)
Pl(f)

)

(24)

However, there is a difference here: In this MH-walk, the states are possible deci-
pher functions f , so the states are not in R

n, but in the space of all bijective
functions {f : Y → S}. The first f simply allocates a distinct character in S to
each symbol in Y . Within 2000 steps of this run, a sufficiently good deciphering
function f was discovered, where the assignments are no longer often changing,
indicating that the Markov Chain had converged. This is a surprising achieve-
ment, given there are around 40 potential functions in the search space for the
approximately 40 distinct characters found in typical texts (letters, numerals,
spaces, punctuation characters, etc.).

6 Conclusion

MCMC techniques seem to be quite beneficial in a wide variety of applica-
tions. The Metropolis-Hastings algorithm is among the top of the list of great
algorithms of 20th century scientific computing [5], and its versions are critical
for Bayesian statistics and machine learning. Nonetheless, MCMC approaches
are approximate, and as a consequence of unpredictability, variations from the

An Overview of MCMC Methods: From Theory to Applications 331

proper conclusions are possible. As a result, MCMC should be used sparingly
and only in the absence of better alternatives, as no assurances can be made.
Thus, assuming computing feasibility, this should be favoured over MCMC for
integrals that can be solved analytically. For practical applications, more sophis-
ticated variations of Metropolis-Hastings are employed as indicated in [13], since
they need fewer steps and hence provide better samples, while also being tuned
to avoid numerical difficulties, which are not discussed here. Alternatively, per-
formance may be optimised by dynamically adjusting parameters, particularly
the covariance matrix, without switching the distribution as the parameters vary
over time. Additionally, various changes to Metropolis-Hastings are required for
low correlations in higher dimensions.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg (2006)

2. Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues,
vol. 31. Springer, New York (2013). https://doi.org/10.1007/978-3-030-45982-6

3. Chen, J., Rosenthal, J.S.: Decrypting classical cipher text using Markov chain
Monte Carlo. Stat. Comput. 22(2), 397–413 (2012). https://doi.org/10.1007/
s11222-011-9232-5

4. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am.
Stat. 49(4), 327–335 (1995). https://doi.org/10.1080/00031305.1995.10476177

5. Cipra, B.A.: The best of the 20th century: editors name top 10 algorithms. SIAM
News 33(4), 1–2 (2000)

6. Diaconis, P.: The Markov chain Monte Carlo revolution. Bull. Am. Math. Soc.
46(2), 179–205 (2009)

7. Gelfand, A.E.: Gibbs sampling. J. Am. Stat. Assoc. 95(452), 1300–1304 (2000).
https://doi.org/10.1080/01621459.2000.10474335

8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Baye
sian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(6),
721–741 (1984). https://doi.org/10.1109/TPAMI.1984.4767596

9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge
(2016)

10. Haasteren, R.V.: Marginal likelihood calculation with MCMC methods. In: Gravi-
tational Wave Detection and Data Analysis for Pulsar Timing Arrays, pp. 99–120.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39599-4 5

11. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57, 97–109 (1970)

12. Huang, H., Yang, W.: Strong law of large numbers for Markov chains indexed by
an infinite tree with uniformly bounded degree. Sci. China Ser. A: Math. 51(2),
195–202 (2008)

13. Kaji, T., Ročková, V.: Metropolis-hastings via classification. J. Am. Stat. Assoc.,
1–33 (2022). https://doi.org/10.1080/01621459.2022.2060836

14. Karras, C., Karras, A.: DBSOP: an efficient heuristic for speedy MCMC sampling
on polytopes. arXiv preprint arXiv:2203.10916 (2022). https://doi.org/10.48550/
arXiv.2203.10916

https://doi.org/10.1007/978-3-030-45982-6
https://doi.org/10.1007/s11222-011-9232-5
https://doi.org/10.1007/s11222-011-9232-5
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.1080/01621459.2000.10474335
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1007/978-3-642-39599-4_5
https://doi.org/10.1080/01621459.2022.2060836
http://arxiv.org/abs/2203.10916
https://doi.org/10.48550/arXiv.2203.10916
https://doi.org/10.48550/arXiv.2203.10916

332 C. Karras et al.

15. Karras, C., Karras, A., Sioutas, S.: Pattern recognition and event detection on IoT
data-streams. arXiv preprint arXiv:2203.01114 (2022). https://doi.org/10.48550/
arXiv.2203.01114

16. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983)

17. Martino, L., Elvira, V., Luengo, D., Corander, J., Louzada, F.: Orthogonal parallel
MCMC methods for sampling and optimization. Digital Signal Process. 58, 64–84
(2016). https://doi.org/10.1016/j.dsp.2016.07.013

18. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–
1092 (1953)

19. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT press, Cam-
bridge (2012)

20. Revuz, D.: Markov Chains. Elsevier, Amsterdam (2008)
21. Ripley, B.D.: Stochastic Simulation. John Wiley & Sons, Hoboken (2009)
22. Wolfinger, R., O’connell, M.: Generalized linear mixed models a pseudo-likelihood

approach. J. Stat. Comput. Simul. 48(3–4), 233–243 (1993). https://doi.org/10.
1080/00949659308811554

23. Xu, J.-G., Zhao, Y., Chen, J., Han, C.: A structure learning algorithm for bayesian
network using prior knowledge. J. Comput. Sci. Technol. 30(4), 713–724 (2015).
https://doi.org/10.1007/s11390-015-1556-8

http://arxiv.org/abs/2203.01114
https://doi.org/10.48550/arXiv.2203.01114
https://doi.org/10.48550/arXiv.2203.01114
https://doi.org/10.1016/j.dsp.2016.07.013
https://doi.org/10.1080/00949659308811554
https://doi.org/10.1080/00949659308811554
https://doi.org/10.1007/s11390-015-1556-8

	An Overview of MCMC Methods: From Theory to Applications
	1 Introduction
	2 Markov Chains
	3 Monte Carlo Simulations
	4 Metropolis-Hastings Algorithm
	4.1 Mathematical Underpinnings
	4.2 Optimizations and Challenges
	4.3 Gibbs Sampling

	5 Applications of MCMC Methods
	5.1 Estimation of Integrals
	5.2 Simulated Tempering
	5.3 Text Decryption

	6 Conclusion
	References

