
Download Speed Optimization in P2P
Networks Using Decision Making

and Adaptive Learning

Aristeidis Karras1(B) , Christos Karras1 , Konstantinos C. Giotopoulos2 ,
Ioanna Giannoukou2 , Dimitrios Tsolis3 , and Spyros Sioutas1

1 Computer Engineering and Informatics Department, University of Patras,
Patras, Greece

{akarras,c.karras,sioutas}@ceid.upatras.gr
2 Department of Management Science and Technology, University of Patras,

Patras, Greece
{kgiotop,igian}@upatras.gr

3 Department of History and Archaeology, University of Patras, Patras, Greece
dtsolis@upatras.gr

Abstract. Pure peer-to-peer networks serve to secure information in
a decentralized, distributed topology. The multi-armed bandit (MAB)
problem formulation proves to be a useful tool for analyzing the prob-
lem of optimizing new peer connections. In this paper, we outline the
new peer scenario described as a reinforcement learning problem with
MABs in order to identify the fastest peer to download from during the
connection process. The MAB problem involves k slot machines which
are also called one-armed bandits and pay out reward values according
to an internal distribution, of which the agent is not aware. The aim is
to choose a strategy to learn which arms pay out the most in order to
maximize total reward over a set number of rounds. Results indicate that
UCB and ε-first performed the best at selecting the optimal peer in each
of our test scenarios. Contrariwise, SoftMax and ε-greedy unperformed.

Keywords: P2P networks · Reinforcement learning · Decision
making · Intelligent agents · Adaptive learning · Multi-armed bandit ·
Strategies

1 Introduction

Peer-to-peer (P2P) computer networks provide an environment for content dis-
tribution in which the integrity of the system is not endangered by the loss
of a single, centralised node. Based on [1], true p2p systems require peers to
be directly accessible (without intermediary entities) and the network state or
quality of service to be retained in the event that a peer is withdrawn from
the network for any reason. The prerequisites for peer-to-peer networks differ
per application domain. However, new peers that connect to the server for the
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first time have no knowledge of the network status. As a result, new peers can-
not be held responsible for preserving the network state and content if existing
nodes disconnect. It is critical that this new peer receives relevant data as soon
as feasible in order to meet both the needs of a real p2p ecosystem and any
required quality of service standards. With the extra volatility of a dynamic
network configuration, the velocity at which a new peer may be brought up to
speed becomes significantly more important. P2P systems may also be seen as
streaming applications where event detection techniques can be used to find a
new peer in the network [2] while MCMC methods [5,6] and heuristics as in [3]
can be used to discover the fastest peer to download from.

For example, consider the case of a p2p network wherein a new peer joins
with the intent to be brought up to speed with the rest of the network as soon as
feasible (i.e. download all the data in the network from other peers). However,
the new peer does not have prior knowledge for the network speeds of its seeds,
only just how much data it receives over time when it chooses a peer and receives
data from them in one (or more) time step(s). The reward is the average number
of bytes received across the number of time steps spent on that action. At this
point, it is assumed that data packets are UDP datagrams.

Time steps should not be confused with steps (or rounds) in the algorithm.
Multiple time steps can happen during a single round, as a step is when the agent
makes a decision for a given number of time steps. Rounds and steps are used
interchangeably within the paper. The agent should aim to choose the peer that
is transmitting the fastest. However, consider that network speeds may change,
and the optimal seed to leech from will not always be the best. This is named
as a restless scenario. We simulate these dynamics by assigning each peer a set
of possible states, as well as a transition matrix of probabilities to transit from
one state to another at every time step. In this case, every peer is running its
own Markov process in the background, irrespective of the action by the agent.

This case can be solved with a multi-armed bandit (MAB) approach where
each peer is considered as an arm in the MAB algorithm. The agent will choose
to pull an arm and receive reward for a certain number of time steps. During
every time step, the network dynamics shift, and each arm may transit to an
other one of its states (regardless of if it was the arm selected or not). Naturally,
this creates greater variance in average reward payout, which serves to simulate
the noise present in real-world network systems.

Previous works [4,7,8] investigate p2p networks where the peers communi-
cate or compete with one another. However, in our case we assume no infor-
mation about peers is initially present on the hardware of the new peer, and
that transmitting this information ahead of the vital data packets should not
be a priority. Therefore, the trial-and-error methodology of MAB agents fits the
learning requirements under these constrained conditions. Various algorithms are
considered to solve the MAB problem, and a few are selected and implemented
in order to evaluate their efficiency against this problem.

The remainder of the paper is organized as follows. In Sect. 2 related work in
the field of multi-armed bandits is surveyed and covered in order to compare our
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work with solutions to similar problems and verify the validity of our results.
Section 3 describes the methodology in both theory and application level while
Sect. 4 highlights the experimental results and their findings. A brief discussion
takes place in 5 and finally, the conclusions and future directions of this work
are presented in Sect. 6.

2 Related Work

Multi-armed bandits (MABs) serve as a useful abstraction for optimization
problems that require decision making with reward outcomes that are initially
unknown. In [9], secondary user nodes pick a single channel without knowing
its quality or availability in cognitive radio networks utilizing a MAB strategy.
The authors employ an upper confidence bound (UCB) algorithm named QoS-
UCB. Extending the bandit model makes wireless network selection more flex-
ible, maximizing end-user perceived quality [10]. In this formulation, the agent
may perform two tasks: measure or utilise. Measuring simply permits assessment
while utilising adds exploitation. Measuring is faster than utilising, which might
require many stages. The payout distributions are determined by the algorithm
selection. Aggressive algorithms like poker have little regret but high variability,
making them less dependable [10] while more efficient methods are shown in [11].

In [4], strategies are provided for coordinating numerous MABs agents and
learning stochastic network conditions. The agent transmits instead of receiving
in their problem formulation. While outbound transmission speed or success
may be measurable, reception rate is not. The final receiver may not have the
resources to unpack transmission bundles in time, causing congestion. In [12],
scheduling algorithms for MAB problems in wireless networks are presented. ε-
greedy, an algorithm that balances exploration and exploitation, has flaws in
its pure randomness and does not take confidence intervals into consideration.
UCB uses this and gradually reduces exploration. There is a distinguish between
single and multi-player multi-armed bandits (SMAB and MMAB). SMAB is used
in single-peer leeching and centralised network methods while MMAB typically
compromises independence for synchronisation overheads.

The study in [13] investigates how k players cooperate to locate an ε-optimal
arm in an MAB environment and find communication only once players learn

√
k

times quicker than a single player. This strategy may be handy if network peers
vary or service quality varies. Little effort has been put towards adapting ban-
dit algorithms to p2p network contexts [7]. This paper implements the ε-greedy
stochastic algorithm in a p2p network, scaling with network size, obtaining a
linear speedup in terms of the number of peers, and retaining the asymptotic
behaviour of the standalone version. In p2p networks, competition is unavoid-
able, particularly when peers attempt to stay up to date. Unpredictable com-
petition makes management tough. Hence, distributed clustering scenarios are
utilized for overcoming MAB difficulties in p2p networks [14]. All peers solve the
same issue in one setting, whereas a cluster of peers solves the same problem
within its cluster. This achieves an ideal regret rate, defined as the difference
between the optimal reward total and the collected rewards.
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In [8], an online learning strategy based on an MAB architecture is designed
to handle peer rivalry and delayed feedback. The work in [15] optimises data rate
transfers and minimises power consumption in wireless p2p networks. Similar
constraints are common when examining graphical processing units (GPUs), as
in [16]. MAB problems are also highlighted in [17], where the integration of MAB
problems with recommendation systems is presented.

3 Methodology

In this section, we present a brief summary of each algorithm investigated, as
well as our methodology for creating test cases and evaluating the performance
of the algorithms on the new peer update task using a limited number of hyper-
parameters.

3.1 Employed Algorithms

The most common algorithm utilized to multi-armed bandit (MAB) problems is
named ε-greedy. In ε-greedy a single hyperparameter ε is taken which indicates
the probability of exploration (i.e., choosing a random arm from the possible
selections), with 1 − ε being the probability of choosing the optimal arm based
on the average rewards so far. ε-greedy is utilized as well as some of its variants
in this paper.

Initially, ε-first is an ε-greedy strategy in which only exploration is done for
the initial Tε rounds, and pure exploitation occurs during the remaining rounds.
The number of rounds (also called steps) is defined as T per run [18]. This forces
exploration meaning peak rewards will be delayed, but broader experience is
gained as a trade-off. Additionally, ε-decreasing is one more ε-greedy variant
whereabouts the initial ε value ε0 is decreased over the number of rounds com-
pleted. In particular, the probability of exploration at a given time t is defined
as

εt = min
{

1,
ε0
t

}
where ε > 0 (1)

The values for ε0 are typically not on the interval [0, 1], instead values like 1.0,
5.0, and 10.0 are used [18].

The SoftMax method (also called Boltzmann Exploration) performs action
decisions based on probability matching methods [18]. Each arm a of k arms
holds an associated probability

pa = eQa/τ/
∑
a′

eQa′ /τ (2)

where Qa is the estimated action value associated with action a. The hyperpa-
rameter of SoftMax is τ , called the temperature. It can be varied similar to ε in
ε-greedy.



Download Speed Optimization in P2P Networks 229

Another variant of SoftMax is Exp3, using the idea of Boltzmann Explo-
ration and probability matching [18]. Each arm a of k arms has an associated
probability

pa(t) = (1 − γ)
wa(t)∑k

j=1 wj(t)
+

γ

k
(3)

of being pulled at time t. The single hyperparameter γ indicates the learning
rate. The weights associated with each action a at time t are denoted wa(t).

In many of the previously mentioned works, UCB (Upper Confidence Bound)
and slight alterations of UCB were used. Given its popularity and excellent
results we hoped it would also perform well within our environment setup.
Instead of selecting actions based on probabilities, UCB alters its exploration
and exploitation as it gathers information about the environment. Least-taken
actions are prioritized during the exploration phase, and once the estimated
action values are more established, UCB exploits the action with the highest
estimated reward. This action selection is derived from the following

At = argmaxa

[
Qt(a) + C

√
log t/Nt(a)

]
(4)

where Qt(a) is the estimated value of action a at time t, C is a confidence value
hyperparamter that controls the level of exploration, and Nt(a) is the number
of times action a has been selected prior to time t. The exploitation part of
the equation is Qt(a), while the second half handles the level of exploration also
controlled by the hyperparameter C. UCB-1 slightly alters the default algorithm
by including a constant of 2 being multiplied by the log t as such,

At = argmaxa

[
Qt(a) + C

√
2 log t/Nt(a)

]
(5)

This is a popular point of view on the original UCB algorithm that we considered
to include to see how they may differ in our implementation.

Another MAB algorithm named poker was introduced in [10] which has low
regret but is unreliable due to high variance. Hence, because of these problems,
time constraints, and the complexity of the pseudo-code included in the paper,
we decided to not cover poker in our evaluation.

3.2 Implementation

The initial peer setup for this work is comprised from a set of 5 single-state peers
we call init5:
PeerArm(2, 1), PeerArm(4, 1), PeerArm(6, 1), PeerArm(8, 1),
PeerArm(10, 1). This simple layout removes the simulated dynamism of multi-
state peers, but provides a descent baseline evaluation for each algorithm.

For the automation of the creation of multiple peers, we introduce Algo-
rithm 1 which takes as input a number of peers to generate, and three distribu-
tions (with their associated hyperparameters) from which it samples the number
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Algorithm 1. produce peers
Require: number of peers n, the distribution for state counts S and its parameters

sp, the distribution for means M and its parameters mp, and the distribution for
standard deviations D and its parameters dp

Ensure: An array of PeerArm objects Φ
1: Initialize Φ as an empty array
2: for p = 0 to n do
3: ns ∼ S(sp)
4: if ns < 1 then
5: ns = 1
6: end if
7: Initialize Π as an empty array of means
8: Initialize Σ as an empty array of standard deviations
9: for p = 0 to ns do

10: π ∼ M(mp)
11: σ ∼ D(dp)
12: Append π to Π
13: Append σ to Σ
14: end for
15: Initialize T as an empty ns × ns transition matrix
16: for i = 0 to ns do
17: Sample ns values ρi ∼ Uniform(0, 1)
18: Set each Ti,j to

ρi,j∑
j ρi

∀j ∈ [0, ns)

19: end for
20: φ = PeerArm(Π, Σ, T )
21: Append φ to Φ
22: end for
23: Return Φ

of states a peer will have, and the mean and standard deviation for each state
reward. Each state requires a mean and standard deviation because rewards are
generated utilizing a normal distribution.

The generate function prod10 set of peers utilizes Algorithm 1 to produce
10 peers using the specification below, each of which is more realistic in their
transmission speed (reward) variance than init5. Respectively we perform the
same task for 20 peers, labelled prod20.

– prod10 = produce peers(10,
– np.random.poisson, dict(lam = 5.0),
– np.random.normal, dict(loc = 10.0, scale = 1.5),
– np.random.normal, dict(loc = 0.5, scale = 0.1))



Download Speed Optimization in P2P Networks 231

The algorithms outlined in Sect. 3.1 are implemented in Python 3.9 language
and evaluated using a PyCharm Jupyter Notebook. Each algorithm utilizes a
generic BanditEnv environment in order to execute actions and resets the envi-
ronment after each execution. The estimates of the action value are computed by
using a sample-average estimate of action value, with an initial estimate of 0 for
each peer. This method does not exploit the stochastic state-changing Markov
process in each peer, as the agent would have to learn the transition matrix
for each peer as well. In the purpose of conserving time and preserving room
for future study, this work uses the sample-average estimation approach. By
default, the MAB algorithms will take an action for 1 time step, but we have
added functionality such that it is possible to take more than 1 action, and the
end reward for that step is simply the average of rewards received by taking that
action for that many time steps. Bear in mind that the state of peer transitions
will remain to be active for each time step. Therefore, the agent cannot lock the
network state by taking an action for several time steps.

4 Experimental Results

Each algorithm completes 100 runs, with a fixed number of n steps. In this
experiments we test for n = 1 and n = 20. The number of steps relates to how
long the peer will be receiving data from its peers. This number is varied in order
to visualize the algorithmic performance in the short and long-term.

The average reward for each step is averaged across 100 runs, and each of
these averages is plotted across the number of steps. In the following subsection,
we present plots created by matplotlib library and seaborn package containing
visually definitive evaluations of each algorithm in our test environment. Our
experiment results do not include UCB-1.

Due to the similarities to UCB, UCB-1 produces almost identical results. This
was not unexpected, and it was excluded in order to simplify the comparisons
with the other algorithms. We also decided to drop ε-decreasing, as its poor
performance produced nothing of note.

4.1 Evaluation

Figure 1 shows the general performance of each algorithm when it comes to the
set of static peers, init5.
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Fig. 1. Average reward over time for each algorithm over 100 steps using the init5
peers with 1 time step per action.

The aforementioned papers, seem to agree that ε, τ , and γ values should be
around 0.1. However, we decided to see if stronger exploitation would benefit
the learning curve. We noticed that lowering the C hyperparameter of UCB did
not improve its already strong performance at C = 1, so we increased it instead.

Figure 2 uses the init5 peers with C value of UCB set to 15, and all other
algorithm hyperparameters set to 0.01.

Fig. 2. Average reward over time for each algorithm over 100 steps using the init5
peers with 1 time step per action. Different hyperparameters are noted. UCB uses
C = 15 as opposed to C = 1.
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Figure 3 uses the dynamic prod10 peer set. Exp3 seems to peak higher than
SoftMax compared to Fig. 1, but then they are almost identical. The other algo-
rithms have similar performance, although it seems that the dominance of UCB
suffers only slightly in stochastic scenarios.

Fig. 3. Average reward over time for each algorithm over 100 steps using prod10 peers
with 1 time step per action.

Fig. 4. Average reward over time for each algorithm over 100 steps using prod10 peers
with 20 time steps per action.

Increasing the time steps to 20 (the amount of time steps the agent will
dedicate to a particular peer) shows a slight reduction in the variance of SoftMax
and Exp3 in Fig. 4. However, it is also noteworthy that the overall average reward
peaks higher for each algorithm, compared to Fig. 3, with 1 time step per action.
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Based on the results in Fig. 1, we wanted to find out if SoftMax would ever
overtake ε-greedy. In Fig. 5 we see that SoftMax eventually stabilizes with lower
variance but it is still lower than ε-greedy.

Fig. 5. Average reward over time for ε-greedy and SoftMax over 1000 steps using init5
peers with 1 time step per action.

Fig. 6. Average reward over time for ε-greedy and SoftMax over 1000 steps using
prod10 peers with 1 time step per action.

However, Fig. 6 shows that this is not the case for the more dynamic prod10
peers. Even after only 1000 steps, it is clear that SoftMax is not rising above
ε-greedy while on init5 its performance was significantly higher.
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As we have seen, ε-first is capable of competing with UCB in optimal peer
selection. In Fig. 7, we show that extending the exploration proportion for more
peers does not present noticeable improvements. We can therefore say that ε =
0.1 is a safe heuristic for ε-first, but also that, in this case, more peers lead to a
reduction in average reward variance in the exploitation phase.

Fig. 7. Comparing average reward over time for various ε values in ε-first using 10
peers (above) and 20 peers (below) with 1 time step per action.

As seen in Fig. 7, the set with the greater number of peers, attains a higher
average reward than the set with fewer peers. Note that all peers in both sets
are created from the same distributions. This is due to the fact that more peers
means more chances for a single peer to be significantly better than the best
peer in a set of fewer peers. In Fig. 7 in the top subfigure, the plots are created
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using the prod10 function, indicating that the number of peers is 10 while in the
bottom subfigure, the plots are created using the prod20 function indicating that
the number of peers is 20. Additionally, noteworthy is the fact that ε-first=0.5
took almost 50 steps to reach a descent amount of reward and therefore the
performance was the highest. This leads us to the initial observation where as
other works highlighted, the value of ε-first must be within [0.01, 0.25] range.

5 Discussion

According to our experimental findings, UCB performed significantly well in
every test situation. This was anticipated based on our study and conclusions
from comparable efforts, but we were nevertheless astonished by the small num-
ber of steps required. This performance may be attributed to the specified C
value, which regulates the amount that the algorithm requires of exploration and
exploitation. As anticipated, running UCB with C = 15 substantially altered the
behaviour of the algorithm, resulting in a significant increase in the number of
learning steps before reaching stability.

The methods ε-greedy and ε-first performed smoothly, although they
required more steps to get a robust performance. ε-first seemed to struggle in
the first ∼10 learning steps, but it immediately leaped to fluctuating about the
performance of UCB, while ε-greedy eventually got itself to beneath UCB.

In respect to the other algorithms, SoftMax and Exp3 have significant short-
term and long-term trade-offs. As demonstrated in Figs. 5 and 6, we directly
compared SoftMax to ε-greedy over a longer period of steps and varied the
number of peers to get a better understanding. We were able to determine that
SoftMax exceeds ε-greedy for low number of steps while as the number of steps
increases, ε-greedy overtakes. This offers SoftMax some appeal if we were in a
scenario with a small number of peers operating for a long period of time, but
this is very improbable.

6 Conclusions and Future Work

In the context of the peer-to-peer network system presented, we were able to
investigate a variety of well-known MAB algorithms (ε-greedy, ε-first, UCB and
more) each of which produced distinct outcomes. To verify the validity of the
results, related literature is surveyed in order to compare our work with solutions
to similar problems. In terms of performance, the most robust of the group was
UCB, while ε-first performed almost identically in the example with the 1 time
step per action. Increasing the number of peers inside a network causes the
average reward value to rise. There may be a negative relationship between the
number of peers and the variance, but the data are ambiguous. This suggests
that our solution may scale effectively as the number of peers in the network
rises; nevertheless, this variance connection requires more investigation.

Future directions of this work include the implementation of the aforemen-
tioned poker algorithm along with additional methods explored in related works,
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such as a gossip-based algorithm. The outcomes of these future experiments can
aid in our comprehension of the performance of more complicated and modern
algorithms in contrast to these undemanding ones. Moreover, a modification of
the behaviour of the environment in the hopes of simulating a peer-to-peer net-
work that would permit various types of user communication can occur. This will
qualify for a more realistic stochastic environment, which should make algorithm
performance comparisons more interesting and accurate, similar to a real-world
scenario where noise is present to all types of communications.
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