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Abstract. The employment of various language modelling techniques
in the area of information retrieval is gaining wide adoption in the state
of the art methods. The precision of the language model enables the
solution of the issue of information retrieval in a huge corpus of texts.
To accomplish this, these techniques begin by estimating a probabilis-
tic linguistic model for each article in the collection that is capable of
generating a ranking of relevant texts in response to a query. One of
the difficulties that this family of methods faces is a shortage of data.
As a result, smoothing methods capable of changing the maximum like-
lihood estimator are required to account for the imprecision created.
This paper highlights its use surpasses established approaches, such as
tf-idf, for creating rankings of documents sorted by relevance. Finally,
we examine various ideas related to query expansion by utilizing such
methods.

Keywords: Expansion of queries · Language models · Cosine
similarity · Maximum likelihood estimators · Decision making · Deep
learning

1 Introduction

Throughout the years, query expansion strategies have been presented as a way
to address the issue of term mismatches between a query and the documents
it refers to. Typically, two kinds of query expansion technique families exist:
local (based on Pseudo, Relevance, Indirect Feedback) and global (based on
the creation and usage of a dictionary) [1]. This paper is focusing on the first
category. Due to the difficulties of obtaining user input, only the first documents
retrieved will be deemed significant. Pseudo-relevant documents are scanned for
potential candidate phrases that may aid in expanding the query [2].
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This strategy has been expanded upon inside the framework of the Language
Model idea [3]. Statistical language models are frequently employed in informa-
tion retrieval because they have a strong theoretical foundation and perform
well empirically. The Robertson and Sparck Jones model [4] and the Croft and
Harper model [5] are two well-known probabilistic techniques for information
retrieval at the state of the art. Both approaches evaluate the likelihood that
each page is relevant to a given query. Clearly, the two primary issues are related
to accurately predicting both the query and document models. By predicting the
factored form of the distribution P (q,D), a Language Model determines the rel-
evance of a document d to a query q [6].

The construction of a fine-tuned Language model must necessarily make use
of smoothing models when one or more terms do not appear in a document. In the
latter case, the maximum likelihood estimator would produce a probability equal
to zero, invalidating the creation of the model itself [7,8]. Another notion that
is advantageous for widening the query and is extensively employed throughout
the paper is that of Word Embeddings. The latter is gained via the usage of
Language models, or more specifically through the co-occurrence of the words
made accessible. This technique is predicated on the ability to map each word
into a vector of real numbers contained inside a vector space. The goal is to
be able to compare their distances in order to determine their similarity. If two
words are similar, they are categorized as synonyms.

The remainder of the paper is organized as follows. In Sect. 3, the objectives
of the paper will be introduced followed by a brief overview of the problem
definition. Section 4, describes the implementation of the system in both theory
and application level while Sect. 5 highlights the experimental results and their
findings. Finally, the conclusions and future directions of this work are presented
in Sect. 6.

2 Related Work

Information retrieval is a rapidly growing field inextricably linked with deep
learning methods. Machine Learning models as in [9] are the foundation for
extracting knowledge as well as events and patterns. Markov Chain Monte Carlo
(MCMC) methods are on their turn employed in the knowledge representation
field as they are stochastic processes that check the underlying distributions
within a set of data [10,11]. Additionally, heuristics are often utilized in gain-
ing useful insights from complex geometric objects so as to extract features or
information [12]. Smart IoT infrastructures as in [13] utilize innovative methods
and emerging technologies for event detection purposes as well as for knowledge
extraction in the field of smart agriculture supply chain.

3 Problem Definition

Language models have a wide range of applications, including voice recognition,
spelling correction, grammar correction, and machine translation. All of these
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applications are tasked with the responsibility of assigning a probability to a
sequence of words based on their frequency of occurrence in one or more texts.
As briefly described in the introductory section, the goal of the following paper
is to prove the existence of another technique capable of extending a query that
takes use of the idea of language model, especially an emphn-grams model. To
accomplish this purpose, the mismatch between the words in the query and the
terms in a corpus of documents must be resolved. The likelihood of creating a
new q query given an estimate of the Language Model for an D document can
only be determined by ranking relevant documents. When dealing with a big
corpus of documents, creating n Language models with n equal to the number
of documents proves to be a computationally difficult procedure.

This research paper utilizes a beneficial strategy to build a preliminary rating
of documents sorted by relevance for a given query q. The tf-idf recovery model
is being used in accordance with word weighting, which is extensively employed
in informational retrieval area, leading to sufficient results. The inclusion of the
LM and other semantic analysis approaches enabled us to surpass the tf-idf
baseline, producing a ranking of texts, more relevant to a given query q [14].

4 Methodology

It should be emphasised that the ranking is generated using the weight vectors of
the tf-idf technique utilising the well-known cosine similarity measure between
the weight vectors. To meet the specified aim, the location of the relevant target
document, that is, the document for which the user is seeking, was tracked. This
was made feasible by selecting a query from the available ones that was similar to
the title of this document. The score supplied to the target document will serve
as the minimal threshold for constructing the new document ranking. This step
is critical since specifying a higher threshold would result in the target document
being omitted from future computations.

By lowering the threshold, however, documents that constitute noise will be
considered. The LMs for each document will be generated based on this ranking,
yielding n LMs, with n equal to the number of relevant documents based on the
query keywords. It should be noted that this step was performed using the skip-
gram idea, with step s equal to two. Each LM may be created only after using
one of the available smoothing procedures. To avoid a linguistic model giving 0
probability to an unseen event, i.e. when a word in the query is not included
in an LM, we should remove some probability mass from certain more common
events and apply it to occurrences we have not seen before.

Smoothing may be accomplished in a number of ways, including Laplace
(add-one) smoothing, Linear Interpolation smoothing [15], add-k smoothing [16],
back-off smoothing [16], and Kneser-Ney smoothing [17]. Among them, the pro-
posed method evaluates the usage of the first two smoothing approaches, each
of which produces results that are effective in accomplishing the ultimate aim.
The strength of the algorithm is in its ability to determine the optimal ranking
of relevant pages using the initial query, iteratively, as s evolves.
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This variation leads to the generation of several LMs, each with step s, with
s = {2, 3, . . . , 10}. At each iteration, a new ranking of documents will be gen-
erated, thanks to the calculation of the Maximum Likelihood Estimation MLE,
between the query q and each document d as shown in (1).

P (q|d) ≈ P (q|Md) ≈
n∏

i

P (wi|wi−1) ≈ count(wi, wi−1)∑n
j=1 count(wj , wi−1)

=
count(wi, wi−1)

count(wi−1)

(1)
After sorting all nine ranks, the one with the target document in the highest
position, near to the top, will be selected. Additionally, this will allow for the
determination of the λ parameters used in the interpolation smoothing process.
By concentrating on the latter approach, it became important to execute the
notion given by [7] about linear interpolation computation. Rather of adding
one to the probability calculation, as the smoothing of Laplace does see Eq. (2),
linear interpolation iteratively calculates the MLE of order two (bi-grams) see
Eq. (3), all the way down to zero (zero-grams) see Eq. (4).

P (wi|wi−1) =
count(wi−1) + 1

count(wi−1) + |V | (2)

P (wi|wi−1) = λP (q|Md) + (1 − λ)P (q|Mc) (3)

P (wi) = λ
1
|V | + (1 − λ)P (wi) (4)

where:

–
∑

i λi = 1
– Md: represents the language model of the single document;
– Mc: represents the language model of the entire collection of documents;
– |V |: represents the number of unique words within the corpus of documents.

It is usually prudent to note that, similar to the iterative process of steps s, both
λ parameters follow the same logic. The aim is to give both values a range of
integers λ = {0.1, 0.2, . . . , 1}. The amount of perplexity between the query word
set W = {w1, w2, . . . , wN} and the language model of the target page included
in the ranking of relevant texts supplied by the tf-idf model will be computed in
both smoothing procedures [18]. The calculation is shown in Eq. 5.

pp(W ) = N

√
√
√
√

N∏

i=1

1
P (wi|wi−1)

(5)

After achieving the optimal ranking, the next step is to construct a term-term
matrix [18], in which the terms include both those from the query and those
from the language model of the whole collection of relevant texts included in
the ranking. The co-occurrences of all words will be given in this matrix. On
this sort of matrix, the computation of Positive Pointwise Mutual Information
(PPMI) is feasible. PPMI is based on the assumption that the easiest method to
assess the relationship between two words is to determine how much more often
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the two words occur in our corpus than we would have expected them to occur
randomly. This metric is derived from the conventional PMI, which is a measure
of the frequency of two occurrences, x and y, in comparison to what we would
anticipate if they were independent (see Eq. 6).

pmi(x,y) = log2
P (x, y)

P (x)P (y)
(6)

The ratio indicates how much more often the two terms appear than we would
predict by chance. Positive, negative, or infinite PMI values are all possi-
ble.Negative values, which indicate that occurrences occur less often than we
would anticipate by chance, are notoriously untrustworthy when dealing with
documents that include few words, as we do here. To resolve this issue, the
PPMI is calculated, which substitutes negative values with zero as shown in
Eq. 7.

PPMI(x, y) = max(log2
P (x, y)

P (x)P (y)
, 0) (7)

However, why is the PPMI computation used? This is advantageous for calcu-
lating the similarity of words, i.e. their synonymy, for searching for paraphrases,
for tracking the change in meaning of words, and for automatically discovering
the meanings of words in various datasets. The cosine similarity is performed on
the first 10 word vectors with the greatest positive PPMI values to determine
the most comparable terms to those in the query. By the end of the inquiry, each
token will have a maximum of 10 expansion terms. As a result, we can immedi-
ately understand how query expansion may be accomplished. Moving on, there
is one more issue to resolve before we can compute the similarity of the cosine:
the high dimensionality of the matrix.

To achieve a high degree of similarity while maintaining a low computing
cost, another idea has been implemented which is the Singular Value Decom-
position (SVD) presented the notion of using SVD on a term-term matrix [19].
By switching from sparse to dense vectors, it is possible to do more accurate
similarity comparisons. The SVD algorithm allows for the decomposition of the
term-term matrix (A), with dimensions txd, into three matrices [20] as shown in
Eq. 8.

A = USV T (8)

where:

– U : matrix of dimension txm where the columns represent the left singular
vectors of matrix A;

– S : diagonal matrix of dimension mxm, containing the singular values of
matrix A;

– V T : transposed matrix, of dimensions mxd, where the columns represent the
right singular vectors of matrix A.

By multiplying the matrix U by the matrix S, a new matrix D of form as in
9, of dimension txm, is formed containing all the terms that will be compared
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via cosine similarity with the query terms contained in the matrix mathcalT as
shown in Eq. 10 given by the product of S and V T .

D = U × S (9)

T = S × V T (10)

With all potential terms readily accessible for inclusion in the query tokens, we
can now produce all conceivable queries. The number of queries generated is
dependent on the number of words in the first query and any words received
via the cosine similarity computation. With a maximum of ten words per token,
the total number of produced queries is equal to the product of the number of
possible pairings of terms and the number of possible pairs of terms as in 11.

#Queries =
q∏

i

(#sim wordsi) (11)

where i denotes a single word in the query and q denotes the total number of
words in the initial question. As new inquiries, they will follow the same method
as the original query, i.e., new LMs will be generated, along with new rankings
of documents that include the target document in the first locations. Finally, the
best query, or queries, will be chosen based on the level of perplexity reached.

5 Experimental Results

The dataset used for the experiments is the famous Recipes1M+ [21], a collection
created by MIT, consisting of more than one million culinary recipes. Of all these
recipes, only a subset of 51235 documents of it was used due to their informative
content which best fits the purpose of this paper. According to the information
about the line distributions for each recipe, the instruction field has a greater
number than the ingredients field. To optimise our search performance, we used
the ‘instructions’ field (Fig. 1). The first ranking of significant papers produced
by the tf-idf algorithm was reviewed using two distinct methods that were most
closely related to the notion described in [22].

To be more precise, each category in a recipe is treated as a distinct item
connected with a document. Both techniques depend on the ability to match
relevant documents’ categories to the category of the target document. Because
the categories are not included in the dataset, the two suggested methodologies
focus on “extracting” them straight from the web. The first solution makes
use of an API called Scrape Schema Recipe, which scrapes the correct category
using the link to the recipe website included in the dataset. Unfortunately, not
all connections remain active, and hence the ranking is determined using three
distinct methods:

1. Overestimated: consider the uncategorized document as good.
2. Underestimated: considers the uncategorized document not good.
3. Discarded: Discard the uncategorized document from the evaluation.

https://pypi.org/project/scrape-schema-recipe/
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Fig. 1. Distributions of lines per ingredients and instructions.

As for the second method, this makes use of the USDA API, a library that
has the task of taking every single ingredient of the recipe and fetching the
corresponding category from a large database belonging to the United States
Department of Agriculture. Compared to the first approach, the recipes that
did not have a category are only four recipes. It is worth mentioning that both
approaches are computationally expensive as the extraction of all categories took
about two days.

In addition to all these evaluations, we decided to create a last one derived
from a mixed approach (Scrape + USDA). Taking five random queries, the eval-
uations of the corresponding rankings are those reported in Table 1. As you can
see, the mixed approach is the one that, in terms of average precision, manages to
achieve the best evaluation. The performances, in terms of precision, recall and

Table 1. Average Precision on each query for each method.

Scrape schema recipe

Queries Overestimate Underestimate Discarded USDA Mixed (Scrape+USDA)

1 0.7562 0.3734 0.5962 0.9823 0.9953

2 0.9402 0.6792 0.9064 0.9974 0.9989

3 0.7542 0.2761 0.5429 0.9782 0.9986

4 0.8958 0.5334 0.8447 0.9528 0.9872

5 0.8346 0.5044 0.7558 0.9860 0.9948

Average 0.8379 0.4736 0.7290 0.9755 0.99487

https://fdc.nal.usda.gov/api-guide.html
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Fig. 2. Performance in terms of Precion, Recall and Interpolated Recall of mixed app-
roach (Scrape+USDA)

interpolated recall, shown in (Fig. 2), demonstrating that the mixed approach
is the best. Moving on to the evaluation of the new queries generated, a visual
comparison, based on a PCA, was used between the ranking generated by the
tf-idf method and each new query produced by the proposed method (Figs. 3, 4,
5, 6, 7).

Fig. 3. Query (a) broccoli heat cauliflower saucepan soup remain recipe butter (b)
broccoli cauliflower soup recipe

The goal is to find a query whose distance from the target document is
less than all other distances produced by the remaining queries. As we can see,
compared to the position of the original query, a query with a smaller distance
has always been found. For each new query generated, the perplexity is calculated
as the skip-grams step varies, with the language model of the target document.
After various tests, with a higher number of queries, it can be stated that the
skip-gram step and the perplexity are two inversely proportional measures, that
is, as the step s increases, the perplexity p decreases. The same behavior occurs
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Fig. 4. Query (a) cheese butter biscuit (b) cheese 12 buffer for biscuit 230

Fig. 5. Query (a) sesame saucepan popcorn heat (b) sesame popcorn

Fig. 6. Query (a) Christmas sheet nut saucepan fruit syrup bar 15 (b) Christmas nut
fruit bar

with the λ1 and λ2 parameters present in the interpolated smoothing. When λ1

is less than λ2, perplexity always tends to decrease (Fig. 8). For the evaluation
of the system four distinct libraries capable of tokenizing documents and queries
were utilized: Spacy, Gensim, Nltk, and Keras. Each of them generates results
that vary in terms of perplexity, the number of queries produced, calculation time
(Table 3), and ranking (Table 2). As shown by the results, each strategy offers
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Fig. 7. Query (a) candy blending apple blending pie ingredient (b) candy apple pie

Fig. 8. Variation of the perplexity value based on the change of the step s and of the
λ1 and λ2 values of interpolated smoothing.

Table 2. Target document position in the ranking of relevant documents. (T: tf-idf,
P: Proposed)

Method 1 2 3 4 5
T P T P T P T P T P

Keras 229 0 627 0 86 0 129 0 56 0
Nltk 229 0 627 0 86 0 129 0 55 0
Spacy 223 0 651 0 85 0 144 0 79 0
Gensim 241 0 656 37 88 0 117 0 42 0

distinct advantages. What each strategy has in common is that the target page
is ranked first.

Looking at the results obtained with an additional five queries Table 4, for
a total of ten queries, we can see that the best results come from Gensim. This
is therefore able to find a greater number of queries that have less perplexity
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Table 3. Performance in terms of number of queries (#Queries) and computation
time.

Method #Queries Time

Keras 15.500 Low

Nltk 15.500 Low

Spacy 20.400 High
Gensim 22.090 Medium

Table 4. Euclidean Distance (D) between a query and the target document at a specific
perplexity (P).

Queries Keras Nltk Spacy Gensim
D P D P D P D P

1 0.15 16.42 0.15 16.58 0.11 34.87 0.13 90.16
2 227 17.91 0.11 22.37 0.21 11.56 0.15 53.44
3 0.03 05.42 0.022 05.41 0.07 05.15 0.01 05.03
4 0.04 12.39 0.05 12.45 0.09 12.44 0.01 10.83
5 0.35 23.04 0.31 23.22 0.43 42.25 0.27 10.36
6 0.24 06.39 0.22 06.39 0.24 03.93 0.21 04.02
7 0.13 1429.33 0.12 1521.33 0.24 06.03 0.12 03.43
8 0.38 13.87 0.39 13.81 0.46 13.65 0.27 08.11
9 0.57 05.31 0.56 05.31 0.61 04.76 0.41 03.92
10 0.01 04.27 0.01 04.29 0.06 05.12 0.01 04.28

with the target document than the other methods. To verify the veracity of the
results, the Euclidean distance between the new query and the target document
was calculated. As we can observe, a smaller distance implies a lower perplexity
between the query and the target document. As for the other systems, Keras and
Nltk obtain similar results, unlike the latter producing queries with the highest
perplexity. As for Spacy, this produces queries with the greatest distance from the
target document and in fact, comparing with the results obtained with Gensim,
we can see that as the distance increases, the perplexity of each specific queries
generated by Spacy also increases.

6 Conclusions and Future Work

In conclusion, it can be said that new queries are generated appropriately and
that Gensim is the system that achieves the best performance. However, other
things need improvement, such as defining a way for establishing a suitable
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threshold for creating each ranking of relevant documents. Throughout the
research, the thresholds supplied by the sklearn library’s precision recall curve
function were considered. Regrettably, not all of them had a sufficient score to
examine the target document. As a result, it was decided to take into account
the initial threshold, referred to as the weight supplied to the target document
using the cosine similarity approach.

This paper could be extended in various ways. Future directions of this work
include improvements in search performance, where an ad hoc barrier can be
established to prevent the ranking of relevant documents from including all of
the collection of documents. Another enhancement is the decrease of the term
matrix (with stochastic gradient descent). Concerning the usage of the various
parsers, it would be interesting to design a hybrid system capable of producing
a large number of questions in a short period of time. Moreover, it would be
interesting to provide a mechanism capable of extending the initial query with
words from a vocabulary such as Wordnet.
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