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Abstract—In this paper, the concepts and techniques for global
graph clustering are examined, or the process of locating related
clusters of vertices within a graph. We introduce the construction
of a graph clustering technique based on an eigenvector embed-
ding and a local graph clustering method based on stochastic
exploration of the graph. Then, the developed implementations
of both methods are presented and assessed in terms of per-
formance. In addition, the difficulties associated with assessing
clusterings and benchmarking cluster algorithms are explored
where PageRank and EigEmbed algorithms are utilized. The
experiments show that the EigEmbed outperformed PageRank
across all experiments as it detected more communities with the
same number of clusters. Ultimately, we apply both algorithms
to a real-world graph representing Twitter network and the
followers and tweets therein.

Index Terms—Graph Clustering, Stochastic Processes, PageRank,
Community Detection, Intelligent Innovation, Social Networks

I. INTRODUCTION

Graph clustering, the segmentation of a graph into groups
of similar nodes, has come to prominence during the past
few decades as the availability of enormous data sets in
consumer and social networks has proliferated. It has become
a useful tool for recognising communities in social net-
works, discovering structure in high-dimensional data sets, and
constructing complex recommendation systems [1]–[5]. One
specific definition of similar nodes is to split graph vertices
into sets with low conductance, as given below. Intuitively,
one might conceive of the conductance of a set S as the
likelihood of migrating from a random node in S to a node
outside S. Lower conductance consequently implies a tighter
community inside the graph and may serve as a measure
of quality for clustered communities. Unfortunately, selecting
partitions of a graph G which minimise the conductance of
the clusters is a non-deterministic polynomial-time (NP-hard)
problem, although there exist approximation techniques with
theoretical guarantees. In the context of this paper, two such
approximation ideas are introduced and covered thoroughly.

Spectral graph clustering is a global technique that utilises
the eigenvectors and eigenvalues of the graph Laplacian to
discover groupings of well-connected nodes. There are several

approaches to perform this task using the spectral information
of the Laplacian. For example, the eigenvector associated with
the lowest non-zero eigenvalue of the Laplacian of a connected
network defines a near-optimal low conductance cut. This re-
sults in an iterative technique that splits the graph into several
clusters, and theoretical recovery guarantees may be obtained
based on the conductance between clusters. Alternately, one
may utilise a subset of the eigenvectors of the Laplacian
corresponding to the lowest eigenvalues to embed the graph
in a Euclidean space, after utilizing traditional distance-based
clustering algorithms such as k-means as in [6] [7]. Moreover,
sampling methods as in [8]–[10] can be utilized effectively for
graph clustering along with stochastic optimization schemes
[11] [12] for community detection. The method of spectral
clustering has intriguing ties to optimization algorithms such
as mincut, ratiocut, and ncut, depending on the normalisation
scheme selected for the Laplacian, which picks clusters that
minimise an acceptable concept of inter-cluster connectedness.

The embedding of eigenvectors is also related to random
walks on graphs. For example, the distance among nodes
in an eigenvector embedding is highly correlated with the
predicted commuting time between the two nodes. In II-A, the
eigenvector embedding technique is highlighted, namely the
algorithm developed by Shi and Malik in [13]. For very vast
graphs, such as those seen in web-browsing and social network
applications, it may be too costly to directly approximate them
using the Laplacian. Instead of computing eigenvectors of the
Laplacian, local clustering approaches explore local structure
to recover well-connected communities in a network.

In Section II-B, the local approach established in [14] is
investigated, where customised PageRank vectors are used to
identify clusters with low conductance for approximation. The
objective here is to get eigenvector-like information via local
graph walks while the embedding of eigenvectors specifies
predicted commuting durations among nodes. This correlation
drives us to examine local network structures for eigenvectors
approximation by using locally biased random walks.

The objective of a local technique is to outperform global
methods in terms of execution speed, particularly for sparse
graphs. Approximate Personalized PageRank (APPR) fulfills979-8-3503-9858-8/22/$31.00 ©2022 IEEE
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this by identifying clusters with theoretical guarantees by
spreading mass from a seed set. Rather than simply construct-
ing quick sparse linear algebra calculations, the approaches
presented here concentrate on strategies to eliminate matrix
operations.

The remainder of this paper is organized as follows. In Section
II-A, the eigenvector embedding strategy and the implemen-
tation of a spectral clustering algorithm is introduced. In
Section II-B, a local method based on the techniques in
[14] [15] is surveyed and implemented. In Sections III and
IV, the performance of the implementation on the generative
planted partition model is presented and its use in a real-
world application: community detection in a social network.
Ultimately, the concluding remarks are in Section V with a
few observations on the performance and implementation of
the global and local methods.

The notation utilized in this work is as follows. An unweighted
graph with node set V and edge set E is denoted G = (V,E).
The degree of a node v ∈ V is written d(v). The adjacency
matrix and degree matrix are A and D, respectively. The
complement of a subset of vertices S in V is denoted SC .
The concepts of cut, conductance, and volume throughout are
also utilized. The cut, volume, and conductance of a subset of
nodes S ∈ V are defined as:

cut(S) = # edge endpoints leaving S =
∑

eij∈E,vi∈S,vj∈SC

(1)

vol(S) = # edge endpoints in S =
∑
u∈S

d(u) (2)

Φ(S) =
cut(S)

min(vol(S), vol(V \S))
(3)

II. PRELIMINARIES

A. Global spectral clustering

Eigenvector Embedding: To represent the eigenvector embed-
ding, consider the problem of partitioning the vertices of a
graph G = (V,E) into two distinct clusters, C ⊂ V and its
compliment CC ⊂ V , such that the conductance Φ(C) is a
minimum over all such partitions. Formally, the aim here to
solve the ncut (normalized cut) program.

C = minMΦ(M). (4)

Before doing so, it is helpful to supply an overview of the
connection between ncut and the eigenvectors of the graph
Laplacian. As it can be seen below, the minimization problem
can be represented as a constrained minimization of the
Rayleigh Quotient (RQ) of the Laplacian L = D − A. The
minimization of the RQ is over structured indicator vectors
which store the partition information in M . The indicator
constraint makes the minimization problem NP-hard, so it
is feasible to consider relaxing this to minimize over a true

subspace of real valued vectors with dimension n. This leads
to a classical minimization problem in linear algebra, the
minimization of the RQ, whose solution is provided by certain
eigenvectors of L.

Note that the shape of the Laplacian is quadratic of form
uTLu =

∑n
i,j=1 aij(ui − uj)

2, where uT denotes the trans-
pose of u. Here, L ∈ Rn×n, u ∈ Rn, and aij are the entries of
the adjacency matrix A. To express (4) a characteristic vector
f is defined component-wise by (5).

fi =


√

vol(MC)
vol(M) i ∈ M,

−
√

vol(M)
vol(MC)

i ∈ MC .
(5)

The partitioning information is encoded in the characteristic
vector f . The aim is to solve (4) by determining an f that
minimizes the conductance of M . The key observations in this
reformulation are that the conductance Φ(M) is proportional
to fTLf and that f is D-orthonormal to the first eigenvector
of the Laplacian, the vector of ones 1 = (1, · · · , 1)T . Below
the results of a few simple calculations where (6) holds are
shown.

fTLf = 2vol(V )Φ(M), (Df)T1 = 0, and fTDf = vol(V )
(6)

The objective and constraints in terms of f and the Laplacian
L, can be expressed as in (7).

minMfTLf,

s.t. f as in (5), with

(Df)T1 = 0, fTDf = vol(V ).

(7)

As the lowest eigenvalue of the Laplacian is always zero and
the corresponding eigenvector is 1, this optimization problem
now appears strikingly similar to the minimization of the RQ
for the generalized eigenvalue problem Lx = λDx, however,
the constraint on the entries of f make this problem NP-hard.
The strategy is to relax the constraint on f so that its entries are
real-valued, in which case (7) is minimized by the eigenvector
x of D−1L corresponding to the second lowest eigenvalue
(assuming G is connected, D is invertible and the generalized
eigenvalue problem Lx = λDx is equivalent to D−1Lx =
λx).

Formerly, the jth vertex was within cluster M if the sign
of the jth entry of f was positive, and in the cluster MC

if the sign was negative.Based on the items in v, nodes to
clusters can be reassigned in order to retrieve the partition
information. Alternately, the items of v may be grouped using
a more complicated approach. Methods such as k-means may
be more resilient for dividing V into more than two clusters
in this situation.
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To partition into k > 2 clusters, a similar analysis can be
carried out. The objective function is modified so that (4) is
replaced by (8).

(C1, · · · , Ck) = min(M1,··· ,Mk)

k∑
i=1

Φ(Mi). (8)

The jth cluster at this point has an indicator vector defined
by (9).

hi,j =

{√
1

vol(Mi)
i ∈ Mj

0 otherwise,
(9)

If H is denoted as the matrix with entries hij = hi,j , then
the minimization problem (8) is equivalent to minimizing
trace(H ′LH) subject to HTDH = I , over H as in (9). If
this last constraint on H is relaxed so that the entries of H are
real-valued, a classical trace minimization problem is obtained.
The solution is given by the matrix X ∈ Rn×k whose columns
are the k eigenvectors of the generalized eigenvalue problem
LX = ΛDX that correspond to the k lowest eigenvalues after
the first zero eigenvalue.

An approach for spectral clustering that attempts to reduce
conductance between groups is proposed in Algorithm 1.

Algorithm 1 SpectralClustering(G, k)

Require: Graph G, number of clusters k.
Ensure: Ĉj = {vi ∈ V : yi ∈ Pj}, for j = 1, · · · k.

1: Compute degree matrix D ∈ Rn×n and graph Laplacian
L ∈ Rn×n associated with graph G.

2: Compute first k + 1 eigenvectors, x0, · · · , xk of general-
ized eigenvalue problem Lx = λDx.

3: Form matrix X ∈ Rn×k whose ith column is xi, 1 ≤ i ≤
k, and let yj ∈ Rk be the jth row of X .

4: Use the k-means algorithm to partition the points {yj}nj=1

in Rk into clusters P1, · · · , Pk.

Due to the relaxation of the restriction on the characteristic
vectors, it cannot be guaranteed that the clusters recovered
by dividing the vertices in the eigenvector embedding would
minimize the objective function (8). Specifically, there are no
assurances that the conductance of these clusters is comparable
to that of genuine minimizers. However, the eigenvector issue
may be handled using ordinary linear algebra methods, and
clustering is often reported to function rather effectively in
practise. The relationship between the distance between nodes
in the eigenvector embedding and other concepts of connect-
edness inside a graph justifies the relaxing and reassignment
procedure. Specifically, the distance between vertices vi and vj
in the above-described eigenvector embedding is comparable
to the predicted commuting time between vi and vj in a
random walk on G. Consequently, one intuitive interpretation
of clusters provided by Algorithm 1 is that a random walk or
diffusion process starting in any of these clusters would prefer
to remain inside the cluster for an extended amount of time
relative to the frequency of jumps between clusters. Different

normalisation techniques for the Laplacian provide analogous
linkages with other optimization methods, such as ratiocut
and mincut, which involve modifying the objective function
in (4).
Implementation: For the implementation, an identical variant
of Algorithm 1 is proposed. Rather than solving the general-
ized eigenvalue problem Lx = λDx, the computation of the
eigenvectors v̂1, · · · , v̂k of the symmetric normalized Lapla-
cian Ls = D−1/2LD−1/2 occurs. The eigenvectors v1, · · · , vk
of D−1L are then obtained by the scaling vi = D−1/2v̂i for
each 1 ≤ i ≤ k.

To calculate the eigenvectors of Ls, the sparse hermi-
tian eigensolver eigsh is utilized which is available in
scipy.sparse.linalg. The eigensolver employs the
implicitly restarted Lanczos method (IRLM) supported by
ARPACK, which may be viewed as repeated applications of
a truncated, implicitly shifted QR algorithm to the tridiagonal
matrix produced by the Lanczos factorization. Dense matrices
are anticipated to have a complexity that scales roughly as
O(n2) due to the matrix-vector product being the major cost
inside each iteration. The predicted complexity scaling for
Laplacians recorded in sparse format with a limited number
of non-zero values is approximately O(n).

Alternative spectral clustering

As stated in Section I, there is a version of spectral cluster-
ing that uses sweeps over the eigenvector corresponding to
the second lowest eigenvalue to find low conductance cuts
with theoretical guarantees [16]. This results in an iterative
approach for clustering the graph into numerous groups. This
spectral clustering technique provides conductivity guarantees
for recovered clusters and is substantially connected to the
Local PageRank clustering approach described in Section II-B.

B. Local PageRank clustering

This section surveys the exposition in [14], which describes the
Approximate Personalized PageRank (APPR) algorithm for
clustering graphs. APPR improves on a prior Nibble method
(see [15]) that used a sequence of random walk vectors. A
PageRank vector can be described recursively, so APPR can
consider a single PageRank vector in place of a sequence of
random walk vectors while retaining theoretical guarantees.

Personalized PageRank is defined as the unique solution to
(10).

pr(α, s) = αs+ (1− α)pr(α, s)W, (10)

where α ∈ (0, 1] is a teleportation constant, s is an initial
concentrated distribution over the nodes (in our case, concen-
trated on a single node), and W = 1

2 (I +D−1A) is the lazy
random walk transition matrix. Note that distribution vectors
are written as row vectors and so multiplied to the left of W .
The customised PageRank defines the distribution of nodes
from a random walk where the user is transported back to the
beginning node s with probability α at each step. This biases
the walk such that local graph structure is explored without
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traversing too far. Note that the global PageRank metric may
be represented as shown above with s representing the uniform
distribution on nodes.

For any α, the PageRank vector can be represented as a linear
transformation of s: pr(α, s) = sRα, where (11) holds.

Rα = α

∞∑
t=0

(1− α)tW t. (11)

This means that a PageRank vector is a weighted average of
lazy random walk vectors in the form of (12).

pr(α, s) = α

∞∑
t=0

(1− α)t(sW t). (12)

Computing approximate PageRank

An approximate PageRank vector apr(α, s, r) is defined in
terms of a non-negative residual vector r that satisfies the
condition (13).

apr(α, s, r) + pr(α, r) = pr(α, s). (13)

The following proposition, which is similar but distinct from
the definition of PageRank, allows an iterative algorithm to
compute approximate PageRank vectors as defined in (14).

pr(α, s) = αs+ (1− α)pr(α, sW ). (14)

Proof. The linear transformation Rα can be written recur-
sively as in (15).

Rα = α

∞∑
t=0

(1− α)tW t = αI + (1− α)WRα. (15)

The result is derived by applying Rα to the starting distribution
s:

pr(α, s) = sRα

= αs+ (1− α)sWRα

= αs+ (1− α) pr(α, sW )

(16)

An algorithm for computing approximate PageRank is con-
structed by step-wise ‘pushing’ mass from a residual vector
r to the associated approximate PageRank vector p. Initially,
the value of p is set to p = 0 and all mass are put in r on the
starting node–i.e., r = χv where

χv(u) =

{
1 if u = v

0 otherwise
.

Then, a number of push operations based on 14 is applied
to spread mass from a single node u. Therefore, α fraction
of r(u) is moved to p(u), representing the teleportation move,
and spread the remaining (1−α) share within r based on single
step transitions of the lazy random walk from u. Throughout
each push, p maintains the approximate PageRank equation

P + pr(α, r) = pr(α, s). This ‘push’ subroutine is described
formally in Algorithm 2.

Algorithm 2 pushu(G, p, r)

Require: Graph G, node u, approximate PageRank p, corre-
sponding residual r
Ensure: Updated PageRank p′ and corresponding residual r′

1: Let p′ = p, r′ = r, then make the following changes
2: p′(u) = p(u) + αr(u)
3: r′(u) = (1− α)r(u)/2
4: for v s.t. (u, v) ∈ E do
5: r′(v) = r(v) + (1− α)r(u)/(2d(u))
6: end for

After performing a large number of pushes, the residual
r (or, more precisely, the degree-normalized version of r)
becomes minimal, making p an excellent approximation of the
PageRank vector. This is specified by the Algorithm 3 where
Proposition 1 limits the required number of pushes.

Algorithm 3 ApproximatePageRank(G, v, α, ε)

Require: Graph G, starting node v, α ∈ (0, 1], ε
Ensure: p = apr(α, χv, r) with maxu∈V

r(u)
d(u) < ε

1: Let p = 0, r = χv

2: while maxu∈V
r(u)
d(u) ≥ ε do

3: Choose any vertex u where r(u)
d(u) ≥ ε

4: p, r = pushu(G, p, r)
5: end while

Proposition 1. Let T be the total number of push operations
performed by ApproximatePageRank and let di be the degree
of the vertex used in the ith push. Then (17) holds.

T∑
i=1

di ≤
1

εα
. (17)

Proof. Note that the amount of probability on the vertex
pushed at time i is at least εdi. Then |r|1 decreases by at
least αεdi over the ith push. Initially, |r| is set to |r|1 = 1, so
inequality (18) holds.

αε

T∑
i=1

di ≤ 1. (18)

Based on the preceding proposition introduced in Prop. 1,
ApproximatePageRank(v, α, ε) runs in time O

(
1
εα

)
. To ac-

complish this temporal complexity, the system must maintain a
queue that contains all push-eligible vertices. When an element
of r is modified during a push, if required, the queue is
updated.
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Finding low conductance cuts

To find cuts with low conductance, a search over sweep sets of
the PageRank vector occurs. This is similar to a variant of the
traditional spectral clustering, as described at the conclusion
of the preceding section, in which a sweep over an eigenvector
is guaranteed to generate a cut with conductance close to the
global minimum. In the PageRank scenario, the cut generated
by the sweep relies on the initial vertex v and the teleportation
constant α.

Given the distribution p with support supp(p) = Np, let
v1, . . . , VNp be an ordering of vertices such that:

p (vi)

d (vi)
≥ p (vi+1)

d (vi+1)
(19)

The jth sweep set is defined to be Sp
j = ∥v1, . . . , vj} for each

0 ≤ j ≤ Np. Given our approximate PageRank vector p, a
search for the sweep set with minimum conductance is the aim,
which can be found by sorting p and computing conductance
of each sweep set in time O

(
vol(supp(p)) log n

)
. Notice that

this involves searching over at most n sets as opposed to the
very naive search over all subsets of V .

A mixing result for PageRank vectors provides theoretical
guarantees (see [14]). Specifically, if a sweep over a pagerank
vector does not yield a cut with low conductance, then
the PageRank vector is near to the stationary distribution.
Alternatively, if there is a set with a small conductance
C and a large number of beginning vertices, the resultant
PageRank vector is not near to being stable since it has a
substantially higher probability inside C. This results in a
localised form of the Cheeger inequality for PageRank vectors
(a similar Cheeger-like inequality guarantees that a sweep over
the second eigenvector of the Laplacian produces a cut with
low conductance).

The sweep process is described formally in Algorithm 4
and can be implemented in time O

(
2b log

3 m
φ2

)
. Note that

the PageRank-Nibble algorithm described in [14] puts
further volume conditions on the sweep sets in order to
provide control over the volumes of the partitions obtained.
Experiments with this occurred by our side but decided to
work with the more basic version of the algorithm.

Algorithm 4 PageRank− Nibble(G, v, φ, b)

Require: Graph G, node v, φ ∈ [0, 1], b ∈ [1, B] where B =
⌈log2 m⌉

1: Let α = φ2

225 ln(100
√

(m))
, ε = 2−b 1

48B

2: p = ApproximatePageRank(G, v, α, ε)
3: Find set Sp

j for j ∈ [1, |supp(p)|] with minimum conduc-
tance

4: if Φ(Sp
j ) < φ then return Sp

j

5: else return none
6: end if

Since the success of PageRank-Nibble depends on a
good choice of v and b, the partitioning algorithm will use
a randomized version as given in Algorithm 5.

Algorithm 5 RandomPageRank− Nibble(G,φ)

Require: Graph G, conductance threshold φ ∈ [0, 1]
Ensure: PageRank− Nibble(G, v, φ, b)

1: Choose a vertex v with probability Pr(v = i) = d(i)
vol(V

2: Choose b in 1, . . . , ⌈log2 m⌉ with probability Pr(b = i) =
2−i

1−2−⌈log2 m⌉

The partition algorithm is then described in Algorithm 6. If a
low conductance set exists, this algorithm finds a set S with
Φ(S) < φ with probability 1− q; Theorem 1 states this more
formally. Note that G(S) means the subgraph induced by S
and volS(T ) means the volume of T in the subgraph induced
by S. The expected runtime of PageRank-Partition is
O
(
m log4 m

φ3 log 1
q

)
.

Algorithm 6 PageRank− Partition(G,φ, q)

Require: Graph G, conductance threshold φ ∈ [0, 1], proba-
bility q ∈ (0, 1)

1: Set W1 = V
2: for j = 1, . . . , 56m⌈log10(1/q)⌉ do
3: Dj = RandomPageRank− Nibble(G(Wj), φ)
4: Wj+1 = Wj \Dj

5: if volWj+1
(Wj+1) ≤ 5

62m then return D = V \Wj+1

6: end if
7: end for
8: return none

Theorem 1. If there is a set C with vol(C) ≤ 1
2vol(G)

and Φ(C) ≤ φ
1845000 log2 m

, then PageRank-Partition

produces a set S satisfying Φ(S) ≤ φ and vol(S) ≤ 5
6vol(G)

with probability at least 1− q.

III. METHODOLOGY

In this section, we apply our global and local clustering
algorithms to a graph of one of the authors’ Twitter friends.
These algorithms may be used to identify community structure
and spheres of influence in a social network. Identifying
these community structures may play a role in improved
recommender and filtering systems. Our results are displayed
in Table I. With 3 clusters, neither EigEmbed or PPRank is
perfect, but each algorithm picks up on interesting features. In
particular, they both find low conductance sets, many of which
correspond well with ground truth clusters. With that being
said, PageRank clustering tended to break up some groups that
perhaps should not have been broken up. On the other hand,
spectral clustering did not break up such groups, but left some
groups too large that should have been broken down. When
using a higher number of clusters (10 instead of 3), spectral
clustering successfully breaks down these larger clusters.
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IV. EXPERIMENTAL RESULTS

For the experiments the local and global algorithms are
compared for recovering ground truth in the planted partition
model. The planted partition model is a generalization of the
Erdos-Renyi random graph model in which communities are
planted within the node set. Each conceivable edge occurs/-
does not occur as the result of a Bernoulli trial (independent of
other edges); nonetheless, the probability of an edge between
nodes in the same community is greater than that of an edge
across communities.

Specifically, the employed planted partition model is detailed
below. Let k represent the number of communities, and n0

represent the number of nodes included inside each commu-
nity. Thus, all communities have a size of n0 and the graph has
kn0 nodes. Let p represent the probability of an edge between
nodes belonging to the same community, and q represent the
likelihood of an edge between nodes belonging to separate
communities.

If q = 0, then the adjacency matrix of a planted partition graph
is block diagonal with a block for each cluster. For q < p, the
the adjacency matrix is more highly concentrated in the block
diagonal than the off-block diagonal. The community mixing
level which is shown in (20),

µ =
(k − 1)q

p+ (k − 1)q
(20)

measures the expected fraction of edges that cross community
boundaries. The value of µ represents the expected value of
the conductance of the ground truth clusters, and so informs
about reasonable values of the threshold φ. In our experiments,
p is set to p = 0.5, n0 = 50 and consider of k = 2, 3, 4, and
5. The aim is to look at a range of q between 0.1 and 0.5 and
use φ = 1.1 ∗ µ.

In Figure 1, the ability of spectral clustering and PageRank
is compared for partitioning, to find low conductance clusters.
Note also that, for the planted partition model, the variance
in the cluster conductance serves as a measure of when the
clusters returned by the spectral clustering algorithm are no
longer reliable, as verified by comparison with the F1 scores
for spectral clustering in Figure 2.

In Figure 2, the ability of spectral clustering and PageRank are
compared for partitioning, to recover the ground truth clusters.
This is measured using the average F1 score of all clusters.
The F1 score of a cluster is defined as in (21).

F1 = 2× precision × recall
precision + recall

(21)

where precision is defined as in (22). and recall as in (23).

precision =
#true positive

#true positive + false positives
(22)

recall =
#true positives

#true positives + false negatives
(23)

To calculate the F1 score for a cluster, first there is a need
to match a given recovered cluster to a ground truth cluster.
The F1 score is calculated for each possible match and use
the maximum score as the F1 score of the cluster.

The experiments shown in Figures 1 were conducted on the
planted partition model with three 50 node communities.
This situation was particularly intriguing since the spectral
clustering technique (EigEmbed) correctly recovered clusters
up to q ≈ .35, yet the F1 score for clusters recovered by
the local clustering approach (PPRank) was relatively low
(see Figure 2). Nonetheless, as indicated by the conductance
plots in Figure 1, PPRank recovered clusters with lower
average conductance. In fact, although EigEmbed clusters 150
nodes into three balanced communities, PPRank consistently
partitioned 150 nodes into two balanced communities and
then further subdivided one of these communities, producing
a lower mean conductance than the ground truth clusters.

For the two block scenario (See the left panel of Figure 2),
PPRank recovers the clusters correctly when the probability q
of edge connections between clusters is low, but the quality
quickly degrades as q is raised. In both instances, spectral
clustering preserves high-quality recovery until q ≈ .35.

Figure 3 shows empirical time complexity on the planted
partition model. Computation quickly became unwieldy for
larger k using PageRank clustering. This is anticipated, as
the PageRank-Partition time complexity depends on
m, which is expected to scale with n2 in planted partition.
For spectral clustering one can observe an approximately
quadratic time complexity as the graph size ranges from
nk = 100 nodes to nk = 1000 nodes. This occurs because the
dominant cost of implicitly restarted Lanczos algorithm, is the
iterative application of matrix-vector products. As the number
of non-zeros m scales with n2 in the planted partition model
with fixed q, the Laplacian becomes increasingly dense as
k increases. This assessment supports the observed quadratic
complexity.

In Figure 4, it is shown the empirical time complexity on
sparse graphs generated from random trees. At this point,
sparse graphs are considered since this should better reflect
the strength of PageRank clustering. In this case, PageRank
clustering is more competitive with spectral clustering but still
increases faster as n increases. This might be reduced with a
more optimized implementation. Finally, a summary of the
Twitter graph after the experiments is given in Table I.

V. DISCUSSION AND CONCLUSIONS

In this section, we highlight a few observations made
while using these strategies. Initially, we see that
PageRank-Partition is easily parallelizable. However,
Eigenvector computations are notoriously difficult to
parallelize. While certain spectral projection-based
eigensolvers, such as [17], are extremely parallelizable,
they often need some localization of the required eigenvalues
in the complex plane. This may be difficult to retrieve without
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Fig. 1. Mean conductance of calculated clusters for Left: spectral clustering and Middle: local PageRank algorithms in the planted-partition model with 50
vertices and three communities. Right: Conductance variance as a sign of low cluster quality.

Fig. 2. F1 scores achieved by spectral clustering and local PageRank for the planted-partition model with Left: two communities of 50 vertices and Right:
three communities of 50 vertices.

Fig. 3. Average computation time over 20 trials to split planted partition graphs into two cluster. Parameter values: n1 = 50, p = 0.5, q = 0.2, φ =
max(0.5, 1.2µ) and k on the x-axis. Left: spectral clustering, Right: PageRank clustering (with PageRank-Partition input q = 0.8

Fig. 4. Average computation time over 20 trials to split sparse graphs into two clusters. Sparse graphs generated using NetworkX random_powerlaw_tree
with γ = 3. Left: single tree, Right: two tree edge sets added together. PageRank-Partition implemented with φ = 0.5, q = 0.8
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TABLE I
RESULTS OF THE TWITTER GRAPH AFTER GRAPH EXPLORATION

Symbol Statistic PPRank EigEmbed
|V | Number of Nodes 839 862
|E| Number of Edges 10614 11427
D Diameter 8 8.1
PL Average path length 3.439 3.881
AD Average degree 12.651 14.498
DEN Density 0.015 0.129

WConn Weak Connected Components 72 98
SConn Strong Connected Components 201 175
Mod Modularity 0.625 0.712
Com Communities Detected 76 102
Init Initial Communities 270 244

knowledge of the specific spectral features (such as spectral
gap information) of the graph. PageRank clustering tends to
create one cluster holding half the nodes and two clusters
each containing one quarter of the nodes for three clusters
in the planted partition model. Using p = 0.5, q = 0.2 and
a range of φ values around 0.5 (the predicted conductance
of the clusters is around 0.44). This may help explain why
higher order approaches (such as evaluating triangles in
the graph) may retrieve more information on the seeded
partitions. According to the planted partition model, the
difference between edge probabilities may be minimal, while
triangle probabilities will be more different. Choosing a
value for the threshold φ is a key challenge when using
PageRank clustering. Choosing a number that is too low
causes the PageRank algorithm to run too slowly (even if
there is a set with conductance smaller than φ), while a
value that is too high results in poor partitioning. This is
predicted, given the temporal complexity is proportional to
1/φ3. In accordance with the above statement, the theoretical
guarantee for PageRank clustering seems to be poor. In
particular, the planted partition model seems to be applicable
only when there is a substantial difference between p and
q. To guarantee finding a cut with conductance less than φ,
the theorem necessitates a cut with conductance so much
less than φ. If the lowest conductance in the graph is not
very low, the corresponding value of φ may be more than 1,
making it unusable. Therefore, the theoretical guarantee does
not seem to be applicable in practise.

In conclusion, we have presented the relevant theoretical
and computational concepts connected with a global graph
clustering strategy based on an eigenvector embedding and
a local graph clustering technique based on local stochastic
exploration of the network. Both approaches have been im-
plemented and their performance on well-studied generative
cluster models evaluated. Both algorithms were then applied
to a real-world graph depicting an online social network.
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