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Abstract—Big data management methods are paramount in
the modern era as applications tend to create massive amounts
of data that comes from various sources. Therefore, there is
an urge to create adaptive, speedy and robust frameworks that
can effectively handle massive datasets. Distributed environments
such as Apache Spark are of note, as they can handle such
data by creating clusters where a portion of the data is stored
locally and then the results are returned with the use of Resilient
Distributed Datasets (RDDs). In this paper a method for dis-
tributed marginal Gibbs sampling for widely used latent Dirichlet
allocation (LDA) model is implemented on PySpark along with
a Metropolis Hastings Random Walker. The Distributed LDA
(DLDA) algorithm distributes a given dataset into P partitions
and performs local LDA on each partition, for each document
independently. Every nth iteration, local LDA models, that were
trained on distinct partitions, are combined to assure the model
ability to converge. Experimental results are promising as the
proposed system demonstrates comparable performance in the
final model quality to the sequential LDA, and achieves significant
speedup time-optimizations when utilized with massive datasets.

Index Terms—Distributed Gibbs Sampling, Random Walker,
Metropolis Hastings, LDA, Big Data Management, PySpark

I. INTRODUCTION

In the big data era, the amount of the produced infor-
mation is increasing every day, creating many opportunities
for machine learning, but also sets serious barriers on how
to handle and analyse extremely large datasets effectively in
terms of memory constraints and processing time. The latent
Dirichlet allocation model (LDA) [1]–[9], is among the most
used methods to overcome the aforementioned matter for topic
modelling. LDA is a hierarchical Bayesian model with three
layers that is sought to investigate latent schemes in document
corpora. Each document is represented as a random mixture
of subjects, with each topic characterized by a distribution
across words. Either variational inference or Markov Chain
Monte Carlo (MCMC) techniques may be used to develop
an LDA model, and both have benefits and trade-offs. The
primary benefit of variational inference is a large reduction
in processing time, but at the cost of potentially erroneous
conclusion. Contrariwise, on MCMC approaches, precision is

gained at the expense of computational complexity, rendering
these methods inapplicable to massive datasets.

In this paper, a distributed implementation of an MCMC
method is introduced along with a marginal Gibbs sam-
pling technique, for creating a Distributed LDA on PySpark
(DLDA). As the number of variables is far more than the
number of cores utilised for parallelization [10]–[13], the
technique adheres to the concept of weak dependence between
variables, allowing data to be partitioned into P sets of
partitions and LDA to be performed locally.

In particular, in the context of this paper the following con-
tributions take place: i) A distributed Gibbs Sampling method
over PySpark is implemented. ii) A Metropolis Hastings Ran-
dom Walker over PySpark is introduced. iii) A marginal Gibbs
sampling for LDA on Spark is implemented, namely as DLDA.
iv) An evaluation of the effectiveness of the DLDA model
for latent topic discovery task takes place. v) An evaluation
of the influence of the parameters of DLDA on the model
performance and execution time occurs.

The remaining of the paper is organized as follows. In Sec-
tion II the preliminaries of this work are introduced followed
by subsection II-A whereabouts a brief overview to plain LDA
models and marginal Gibbs sampling techniques is introduced,
while in Section III the proposed system is covered in both
theory and application level. Specifically, in subsection III-B
a detailed analysis on the distributed LDA implementation
using PySpark is presented. In Section IV, an evaluation of the
results of the distributed model is provided and a comparison
to the sequential algorithm takes place. Finally, the conclusions
and future directions of this work are presented in Section V.

II. PRELIMINARIES

A. Latent Dirichlet Allocation

Before proceeding with the details of DLDA developed,
the standard LDA model is briefly reviewed and shown in
Figure 1 using plate notation. LDA represents each of D
documents as a mixture of K latent topics, where each topic
is a multinomial probability distribution over a vocabulary of
V words. The process of generating a new document j is
described as follows:979-8-3503-9858-8/22/$31.00 ©2022 IEEE
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Fig. 1: Graphical model representation for LDA. Observed
variable w is shaded with grey color.

• from a Dirichlet distribution with parameter α, draw a
mixing proportion θk|j .

• for the ith word within the document, first draw a topic
assignment zij , where topic k is chosen with probability
of θk|j , and then the value w of word xij is drawn from
the zij topic with probability ϕw|k, where ϕw|zij which
is drown from a Dirichlet prior with parameter β.

The preceding description of the process of document gener-
ation is equivalent to:

θk|j ∼ Dir(α) ϕw|k ∼ Dir(β)
zij ∼ θk|j xij ∼ ϕw|zij

(1)

where α and β are fixed Dirichlet priors.
Let the observed words to be x = {xij}. The aim is to

compute the posterior distribution over the latent variables z,
θ and ϕ. The two most-frequently used inference procedures
are based on either using variational methods [1] [14] [15]
or Markov Chain Monte Carlo (MCMC) methods [16]–[28].
This paper focuses on the latter, and more precisely, on
a marginal Gibbs sampling inference procedure for LDA,
initially proposed in [16]. The samples of the marginal Gibbs
sampling with latent variable z with θ and ϕ are desegregated.
In this scenario the conditional probability of zij is defined as:

p(zij = k|z¬ij , x, α, β) =
ck,m,· + α

N¬i
j +Kα

ck,·,n + β

ck,·,· + V β
(2)

where ¬ij denotes word i within a document j that is elim-
inated in the count values and ck,m,n represents the number
of times topic k is assigned to a word n in the document m.
Missing index value for ck,m,n (e.g. ck,·,n) denotes summing
over that index (e.g. ck,·,n =

∑M
m=1 ck,m,n).

The deployment of a sequential marginal Gibbs sampler
for LDA is pretty straightforward as it operates on a set of
count values, ck,·,m, ck,m,· and ck,·,·. The algorithm initiates by
randomly assigning a topic to a word in a document, updating
the count values accordingly, and performs a loop over the
number of iterations to reassign a topic to a word according
to the conditional probability. The outline of LDA marginal
Gibbs sampling is presented in Algorithm 1.

III. METHODOLOGY

A. Distributed Gibbs Sampling over Spark

At this point, think of a pretty basic latent variable model
being a mixture of exponential distributions comprised by a

Algorithm 1 Gibbs Sampling

Input: latent variable z(0) = ⟨z(0)1 , ..., z
(0)
k ⟩

1: begin
2: for all t = 1 to T do
3: for all i = 1 to k do
4: z

(t+1)
i ∼ P (Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
k )

5: end for
6: end for
7: end

finite number of components. Then, for each data-point yi
suppose that yi is drawn among one of K distinct exponential-
based distributions. Hence, each of the data-points will have
a distinct time scale parameter as in (3).

yi ∼ w1θ1 exp (−θ1y) + w1θ2 exp (−θ2y) + . . .

+wKθK exp (−θKy)
(3)

Without sacrificing generality, assume that we only observe
just a two-component model. This leads to the following model
of generation as in (4).

yi ∼ w1θ1 exp (−θ1y) + w1θ2 exp (−θ2y) (4)

Then, for every model component, the aim is to estimate a
single parameter θk for each model component along with the
relative weight for the corresponding component wk. The pre-
ceding model although is a fundamental one, it has the same
inner workings among many latent variable models. Therefore,
given some data of form {y1, y2, ...} denoted as yN , the aim
is to estimate the model hyperparameters {w1, w2, θ1, θ2}.
Utilizing a Bayesian approach, the goal is to investigate the
posterior distribution p(θ1, θ2, w1, w2|yN ).

Similarly with Bayesian mixture models, the next step is the
data augmentation (only applied to the parameters and not on
the data entirely). We perform so, by adding a latent indicator
variable si for every data-point yi. This added indicator mainly
points to one of the components si ∈ {1, 2} in order to identify
which of the components is possibly generated for a specific
data-point.

In particular, the posterior distribution is now of the form
as shown in (5).

p(θ1, θ2, w1, w2s1, s2, ..., sN |yN ). (5)

However, by using Gibbs sampling the si is separated and
this leads to (6).∫

p(θ1, θ2, w1, w2, s1, s2, ..., sN |yN )ds1...dsN

= p(θ1, θ2, w1, w2|yN ).

(6)

Which results to the original posterior distribution. At this
point that the latent indicators exist, let Aj denote a set of
each and every i where si = j. Then, the set Aj collects
the data-points all together based on the current indicator si.
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Then, a Gibbs sampling technique can be derived where only
three types of parameters are taken into consideration which
are shown in (7).

p(θ1, θ2|si, ..., sN , w1, w2, yN ) = Unknown,

p(w1, w2|µ1, µ2, s1, ...sN , yN ) = Unknown,

p(si|µ1, µ2, w1, w2, yN ) = Unknown.

(7)

Utilizing a Gamma prior on the p(θk) = Ga(a, b) and a flat
prior on the si, we derive the following conditional posteriors
as in (8).

θk|si, ..., sN , yN ∼ Ga

a+ |Ak|, b+
∑
i∈Aj

yi

 ,

w1, w2|... ∼ Dir(|A1|, |A2|),
si|... = Cat(p1, p2).

(8)

The latent indicators si from (8) are drawn from a cate-
gorical distribution comprised by a parameter vector whose
elements are the mainly the likelihood of observing yi in each
component. In particular, the very first component can have a
likelihood of the form as shown in (9).

L1 = θ1w1exp(−θ1yi) (9)

While the second parameter of (8) has a likelihood of the
form as shown in (10).

L2 = θ2w2exp(−θ2yi) (10)

These likelihoods are therefore normalized and produce
elements of the probability vector of form (11).

p1 =
L1

L1 + L2
,

p1 =
L2

L1 + L2

(11)

The parameters wk and si are inextricably linked due to
the conjugacy of the Dirichlet distribution and the Categorical
distribution; hence, we shall disregard the wk for the sake of
simplicity. Thus, a simpler two-part marginal Gibbs sampler
is obtained which is shown in (12).

θk ∼ Ga

(
a+ |Ak|, b+

∑
i∈Ak

yi

)
, si ∼ Cat(p1, p2). (12)

Consequently, a Gibbs sampler for our latent variable model
may be derived in two simple steps: first, we resample the
component parameters θk given the current data labels, and
then we resample the data labels si given the current model
parameters. This approach will also hold true for models with
far more complicated latent variables. Consequently, our whole
Gibbs sampler may be implemented using the following steps.
For each loop:
resample the parameters given the labels
resample the labels given the parameters

Moreover, if we examine the necessities for each component
of this for-loop, we can observe that each component can be
computed rather simply in a distributed computing environ-
ment such as PySpark.

Specifically, one can first examine the resampling for the si
data labels as in (13).

si ∼ Cat(p1, p2), (13)

where p1 is the relative likelihood of detecting yi from
component 1, and p2 is the relative likelihood of witnessing yi
from component 2. The present estimates of 1 and 2 may be
used here to calculate these quantities; the only information
required are the values of 1, 2, and yi. We may then resample
si for yi as this demonstrates that the resampling of si is
independent of all data-points other than yi. This leads to
the outcome that this step of the Gibbs sampler is extremely
parallel and can be calculated utilizing a single map() call.

Then, lets examine the resampling of the model parameters
θk which is given in (14).

θk ∼ Ga

(
a+ |Ak|, b+

∑
i∈Ak

yi

)
. (14)

Observe that, rather than using certain normalising con-
stants, this posterior relies on a sum over a subset of the data
as in (15). ∑

i∈Ak

yi (15)

To estimate θk for each k, the required information is
just from the yi where i ∈ Ak. While from this set of yi,
one can simply extract the necessary statistics to perform
calculation; while in this example, merely their total and
the size of the set is used. In the Spark application of the
aforementioned method, we may observe two things. Initially,
a groupBy() function may be used to divide the data into
groups based on their label si. Secondly, inside each group,
adequate statistics may be obtained using a simple sum or
count, both of which constitute a commutative monoid and
are hence simply parallelizable and implementable with a
reduce() function. The reduceByKey() function of Spark
can efficiently perform both of these operations. Then, given
adequate data for each group, it is easy to generate a new
posterior sample and revise our estimates of the parameters
wk and θk for each group.

This type of Bayesian latent variable model can now be
applied to large data sets with billions of observations using
the map(), reduceByKey(), and other functions of Spark.
At this point that everything required to conduct proper Gibbs
sampling in Apache Spark is set, we may now proceed.
This preceding example although is pretty rudimentary, it
illustrates the fundamental structure of latent variable models
that enables distributed parameter sampling. This Exponential
Mixture Model example concludes with a PySpark application
that computes what we have previously discussed.
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B. Distributed inference for LDA

Although LDA and marginal Gibbs sampling have been
extensively used, this approach is inapplicable for processing
big document corpora because to its high computing cost. In
addition, enhancing the speedup process via parallelization
is not simple, since marginal Gibbs sampling is a strictly
sequential procedure that samples a new topic assignment zij
based on the present state of one variable. This section presents
an approximate marginal Gibbs sampling approach for LDA,
when data is dispersed over various PySpark processors and
clusters.

1) Distributed LDA with PySpark: In order to distribute
the computations, we follow the hypothesis proposed in [10]
and assume that, since the number of words in a document
is typically greater than the number of processors, the de-
pendency between topic assignment zij and zi′j′ is weak;
consequently, the sequential sampling requirement can be
relaxed, and the LDA model can be trained and tested in a
distributed environment.

The primary function of the DLDA algorithm is shown in
Algorithm 2. After random initialization, each document d is
mapped to a record holding the document identifier, a sparse
bag-of-words representation of the document’s content, and
the ck,d,· count value corresponding to the document d. The
collection of processed D documents is then partitioned using
the usual Spark partitioning strategy and hashing function
across P partitions. Finally, the usual LDA method with
marginal Gibbs sampling is executed in parallel across all
partitions, separately for each document, in order to update
topic assignments z. Count values ck,m,· and ck,·,· cannot be
partitioned since they represent the overall state of the model.
Consequently, ck,·,n and ck,·,· are communicated to all nodes,
and their local duplicates are used throughout the distributed
sampling operation. Every nth iteration, the count values ck,·,n
and ck,·,· are computed using the z reduction process and
communicated back to the nodes. Iteration interval between
the update of the global count values, n, is one of the the
most fundamental parameters of the model.

C. Metropolis Hastings Random Walker

In this subsection a modified Metropolis Hastings-based
random walker is introduced for unbiased sampling over Face-
book network for text investigation of users’ posts. Initially,
consider each node seed u to be sampled. When the Metropolis
Hastings algorithm draws a node v from N(u) with probability
1
du

, the algorithm accepts v as a sample with probability min
(1,du

dv
) and rejects it with probability 1-min(1, d+u

dv
) where

N(u) is a set of u neighbors and di is the degree of node
i.

For the implementation, a specific percentage of seed nodes
is initially selected and then random walker begins for each
and every one. Because of this structure where it visits each
node independently, the parallelism and distributedness of the
algorithm occurs through PySpark. Ultimately, all the unique
nodes in every iteration are inserted to the pool. The Algorithm
for this implementation is given in Algorithm 3.

Algorithm 2 Distributed LDA with marginal Gibbs Sampling

1: begin
2: documents← map(d: id, d.bow, ck,m,·[d])
3: Initialize z at random and increase the count values
4: Update global counts ck,·,n, ck,·,·
5: Divide D documents into p partitions
6: for all i = 0→ iterations− 1 do
7: Multi-cast global counts ck,·,n, ck,·,·
8: for all p partitions distributed in parallel do
9: Copy global counts ck,·,n, ck,·,·

10: Perform LDA(Dp, z)
11: end for
12: z← collect()
13: Update global ck,·,n ← z.reduce()
14: Update global ck,·,· ← z.reduce()
15: end for
16: end

Algorithm 3 Metropolis Hastings Random Walker

1: Let u ← seed node;
2: while Stop Condition is not satisfied do
3: Pick a node v uniformly at random from u neighbors
4: Construct a random value q ∈ [0, 1] uniformly
5: if q ≤ (du/dv)

α then
6: u← v;
7: else
8: Stay at u
9: end if

10: end while

IV. EXPERIMENTAL RESULTS

In this section, the results for the evaluation of the DLDA
model effectiveness are presented and analyzed. The section
initiates with comparing the performance of distributed and
sequential LDA models, followed by investigating the influ-
ence of the interval between updates parameter on the model
effectiveness.

Experiments were performed using three datasets containing
texts available on Kaggle: CVPR 20191, NIPS papers2 and A
Million News Headlines3. Due to time and resource limitation,
the experiments were conducted using a subset of each dataset.
In the case of CVPR dataset, the whole dataset was used, while
from NIPS papers we used all not missing abstracts. Note that
for one of the experiments, full ABC dataset was employed.
After tokenization and stopwords removal, each dataset was
filtered for n most frequent words. Note that the value of
n was determined experimentally, to assure that the runtime
was reasonable taking into account the time restrictions. The
characteristics of the datasets are presented in Table I.

The performance of the DLDA and sequential LDA models
is assessed based on two criteria: the quality of the trained

1URL: kaggle.com/datasets/paultimothymooney/cvpr-2019-papers
2URL: kaggle.com/datasets/benhamner/nips-papers
3URL: kaggle.com/datasets/therohk/million-headlines
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TABLE I: Characteristics of Datasets

Dataset CVPR NIPS ABC
Number of documents 1294 9719 1213004

Number of distinct tokens 277 312 428
Total number of words 2070 15542 1997528

model, as measured by the perplexity metric [1], and the
execution time. Initially, we generated perplexity values during
training for both models using the ABC News headlines S and
NIPS abstracts datasets for a variety of topic counts. Second,
we assessed the execution time of model training and esti-
mated the acceleration using the two aforementioned datasets
and ABC News headlines. Experiments with sequential LDA
were conducted on a local computer with an Intel Core i9-
10850k 3.90 GHz processor and 32 GB of memory, while
DLDA research was conducted on a server with 56 cores. To
decrease server resource usage, 50 partitions were utilised in
the experiments.

In order to determine the effect of the interval between
updates parameter on DLDA performance, the model was
trained with variable values for this parameter and a changing
number of topics. The evaluative criteria are identical to those
used in the first portion of the experimental results section.

A. Perplexity

The perplexity findings for ABC News headlines and NIPS
abstracts which are illustrated in Figures 2,3, demonstrate
that DLDA method often converges more slowly than the
sequential LDA method, which is to be anticipated given that
it relaxes the sequential sampling constraint. In the majority
of instances, DLDA is able to attain a final perplexity value
that is very similar to or the same as the standard LDA
model, although it needs more iterations to do so. Observe
that when issue dimensions increase (e.g., the amount of
documents/topics/words), the distributed model requires more
iterations to reach equivalent model quality to the sequential
LDA, as shown by the divergent convergence rates of the three
examined datasets.

Fig. 2: Perplexity during training for different number of topics
in ABC dataset.

Fig. 3: Perplexity during training for different number of topics
in NIPS dataset.

B. Execution time

TABLE II: Execution time in seconds and speedup achieved
by DLDA with respect to different number of topics in CVPR.

Dataset CVPR
Topics K = 5 K = 10 K = 20
LDA 47.80 51.59 57.41

DLDA 117.27 126.82 143.06
Speedup 0.408 0.407 0.401

TABLE III: Execution time in seconds and speedup achieved
by DLDA with respect to different number of topics in NIPS.

Dataset NIPS
Topics K = 5 K = 10 K = 20
LDA 1729.06 1779.65 2022.13

DLDA 128.03 159.32 207.01
Speedup 13.505 11.170 9.672

TABLE IV: Execution time in seconds and speedup achieved
by DLDA with respect to different number of topics in ABC.

Dataset ABC
Topics K = 2
LDA 32557.60

DLDA 3929.08
Speedup 8.291

In Tables II,III,IV, the execution time and speedup for
distributed and sequential models with regard to three datasets
and varied numbers of topics are provided. Overall, it can be
seen that employing DLDA to analyse tiny datasets increases
the execution time when compared to normal LDA. Using
DLDA increased execution time for the ABC News subset
dataset by roughly thrice compared to the sequential approach.
Given the complexity of initiating the Spark context, data
distribution, and the time required for global count vales up-
dates and broadcasts, DLDA cannot compete with sequential
LDA since, although processing documents sequentially, it
does not need extra variable synchronisation. Only when this
model is used to medium- to large-sized datasets can the
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speedup and performance enhancements of DLDA be noticed,
as the parallel processing of documents drastically reduces the
described overhead. For the NIPS abstracts dataset, the DLDA
model produced a speedup of 13,505, 11,170, and 9,672 when
the number of topics was 5, 10, and 20, respectively, however
for the ABC News headlines, the distributed method was
around eight times quicker than the sequential model.

C. Interval between updates

The parameter interval between updates is a crucial factor
impacting the quality of the model and training time in the
DLDA case. To examine the influence of this parameter,
perplexity and execution time for the DLDA model were
evaluated when the method was executed on the ABC News
headlines S and NIPS abstracts datasets with parameter values
of 5, 10, 20, and 50 iterations. Figures 4,5,6 present the results
for the ABC dataset and 7,8,9 present the results for the NIPS
dataset. The findings for the CVPR dataset were comparable
to those for the NIPS dataset, and since certain sentences were
missing from the dataset, we omitted them from the Figures
presented here.

As anticipated, raising the amount of the interval between
updates results in a decrease of the convergence rate, as
the urge for sequential sampling is violated more and more.
However, raising this amount also lowers execution time
since it restricts the number of updates and broadcasts for
global count values. In addition, it should be noted that this
issue emerges when the dimensions within a dataset increase,
therefore this parameter should be adjusted to a value that
strikes a compromise between model quality and execution
time.

Fig. 4: Perplexity during training DLDA for ABC dataset of
the interval between updates parameter for K=5.

Ultimately, the results for evaluating the Metropolis Hast-
ings Random Walker in terms of running time for different
number of topics are illustrated in Figure 10.

Fig. 5: Perplexity during training DLDA for ABC dataset of
the interval between updates parameter for K=10.

Fig. 6: Perplexity during training DLDA for ABC dataset of
the interval between updates parameter for K=20.

Fig. 7: Perplexity during training DLDA for NIPS abstracts of
the interval between updates parameter for K=5.
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Fig. 8: Perplexity during training DLDA for NIPS abstracts of
the interval between updates parameter for K=10.

Fig. 9: Perplexity during training DLDA for NIPS abstracts of
the interval between updates parameter for K=20.

Fig. 10: Metropolis Hastings Random Walker time across
different number of topics.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a distributed implementation of Gibbs Sam-
pling is presented along with a method for implementing
latent Dirichlet allocation model in distributed environments
such as Apache Spark. To perform so, the dataset is split
into P partitions and LDA is performed locally on each
partition. Then, the resutls are derived with the use of Resilient
Distributed Datasets (RDDs). Moreover, a Metropolis Hastings
Random Walker is presented for graph exploration in the
Facebook network. This method is capable to explore posts
made by users within Facebook network so this could be an
evaluation metric for the Gibbs sampling method presented,
but this requires further investigation. The results of the ex-
periments show that the proposed algorithm is able to achieve
comparable results in terms of model quality when compared
to the sequential LDA, while providing significant speedup due
to using parallelized approximate Gibbs sampling procedure.
For the first dataset used, the DLDA model achieved speedup
of 13.505, 11.170 and 9.672 for number of topic equal
to 5, 10 and 20 respectively, while for the second dataset
the distributed algorithm was about 8 times faster than the
sequential model. However, the current implementation on
DLDA could be further improved by reducing the amount
of data to be synchronized through a optimized partitioning
and shuffling involving distribution of the data at the level of
words.

Future directions of this work include modifications in the
proposed algorithmic scheme as well as methods for utilizing
alternative Monte Carlo methods. In particular, Hamiltonian
Monte Carlo (HMC) [29]–[38] is an advanced and efficient
alternative to sampling techniques such as Metropolis-Hastings
and Gibbs Sampler. Similar to these other algorithms, Hamil-
tonian Monte Carlo is well-suited to Bayesian statistical ap-
proaches since it just needs the kernel of the target distribution.
By assigning a given random variable to each dimension of
the target random variable that we wish to sample, as well
as requiring that the target and momentum satisfy Hamilton’s
equations for a given time step, Hamiltonian Monte Carlo
forces our probability space to behave as if it were a random
physical system. Moreover, this construction accelerates the
Markov chain through the probability space in potentially
improbable directions while still allowing for correction via
memory conservation, allowing the chain to traverse regions
of low probability that may have been an impediment to mix-
ture when using a naive algorithm like Metropolis-Hastings,
which gravitates almost exclusively towards regions of high
probability density. As shown in the proposed framework, the
mobility given by DLDA makes it well suited for sampling
from distributions that need large traversal lengths in the
Markov chain, such as multimodal or high-dimensional dis-
tributions. Moreover, ensemble learning methods as in [39] or
optimization schemes for query expansion [40] or p2p network
simulations [41] [42] can be utilized for possible integration
with this work for further fine-tuning adjustments. Each of the
preceding directions is set to be implemented in future work.
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