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Abstract—In the modern era of Internet of Things (IoT) and
Industry 4.0 there is a growing need for intelligent microcon-
trollers that can collect, sense and analyse data effectively and
efficiently. Such devices can be installed in large scale IoT
deployments ranging from smart homes to smart cities and
smart buildings. The aim of these devices shall be not only
data monitoring but at the same time energy saving and overall
building management. In the context of this paper, an all-in-
one microprocessor is presented, namely ZAC888DP, which can
sense data from multivariate sources and perform data analytics
on top of the collected data. Moreover, machine learning (ML)
models are deployed in the embedded memory of the device and
specifically TinyML methods using a tflite file. The aim of the
developed ML model is to collect data from four heterogeneous
sources (water sensor, light sensor, humidity and temperature)
in order to identify and forecast possible lavatory accidents. The
experimental results of this work are encouraging as the model
managed to achieve 100 percentage accuracy after 256 iterations.
Future directions include the integration of the device with a
neural network that will be trained on top of the pre-trained
model in order to increase the overall precision even further.

Index Terms—IoT, TinyML, TensorFlow Lite, Smart Hotels,
Smart Buildings, Energy Saving, Accident Prevention System

I. INTRODUCTION

The Internet of Things (IoT) has revolutionised our lives
since its initial emergence. Nowadays, people can automate,
schedule or monitor smart home actions as well as whole
facilities ranging from small buildings to large companies. The
emerge of IoT applications has lead to the creation of tiny
microcontrollers but conversely with high capabilities. These
microcontrollers can aid in several sectors such as energy
management, appliance control utilizing event detection mech-
anisms [1] and even more in the accident prevention sector in
one or more areas within a building.

Early accident prevention using sampling approaches [2]–
[5] or even more prediction based on deep learning methods
as the ones presented in [6] [7] can significantly help in
saving peoples lives from injuries. As contradictory as it
might be, 234 thousand accidents occurred in the lavatory
area within a building as the research [8] conducted by the
Centers for Disease Control and Prevention (CDC) highlights.
This number is 1% of all -non-fatal- injuries and especially in

those over 65 years old 2.5%, causing some really serious
and painful injuries. Hence, early accident prevention and
information systems are of note as they can forecast and avoid
user-dangerous situations by utilizing signals from multivariate
sources that play a vital role analysing the users’ routine.

This work aims to identify the variables that enhance the
likelihood of a possible fall of a person and to develop
techniques for early prediction of a potential accident, so as
to promptly alert the user. This is accomplished via the use
of machine learning (ML) methods and, more particularly, the
TinyML technique, which is optimised for microprocessors.
The ESP32 microprocessor, one of the most well known
devices in the IoT sector is highly compatible for integration
with TinyML and is also utilized in this work. A secondary
objective of this work is the actual implementation of the
aforementioned mechanism in a simulated environment, which
is coupled to an existing automation system named as the
ZAC888-DP device. This device is nowadays installed in
several facilities and is responsible for the entire management
of the features within a room.

Additionally, we also present the innovative and all-in-
one microprocessor ZAC-888DP in detail, which is currently
utilised for home and hotel automation incorporating TinyML
techniques for accident prevention in areas of the house and
specifically the lavatory area and to alert the user promptly.
The pre-trained ML model is initially built and tested within
the ESP32 environment whereas later on, is exported as a tflite
file and transferred through the Arduino environment to the
device. Ultimately, the ZAC888DP device makes use of the
ML model and forecasts the likelihood of a possible lavatory
accident based on variables obtained from sensor readings each
of which has its own weight.

This rest of the paper is structured as follows. In Section
II related work regarding smart buildings and energy manage-
ment is covered along with accident prevention systems. In
Section III the hardware and software aspects of the ZAC888-
DP device are covered along with the features and functions
of the microcontroller. Additionally, the model architecture is
presented as well as the machine learning model implemented
in TinyML. Section IV summarises the experimental results
and their findings and finally, the conclusions and future
directions of this work are presented in Section V.979-8-3503-9858-8/22/$31.00 ©2022 IEEE
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II. PREVIOUS WORK

In the context of Internet of Things (IoT) applications, sen-
sors and actuators play a vital role in the energy management
of intelligent power systems [9] [10]. Energy management
is crucial for the development of smart power systems. It
is relevant to several areas of smart power systems, such as
microgrids, smart homes, and demand side management. Due
to the unpredictability of renewable energy supplies and loads,
uncertainty presents a difficulty for energy management.

Energy management in smart buildings has placed a large
emphasis on determining the optimal contract power value
selection [11]. High-end smart meter devices are also utilized
for energy desegregation where the separation of an aggregate
energy signal into the consumption of individual appliances
in a household is presented in [12]. Smart Home management
and analytics utilizing big data are presented in [13] where
the proposed system uses a system on a chip (SOC) device
to collect data and transmit it to a centralized server for
further processing. Advanced IoT based systems for energy
management in buildings are presented in [14] where the
system incorporates cross-domain data, such as the data of the
building (e.g., energy management systems), energy output,
energy pricing, weather data, and end-users’ behaviour, to
provide daily and weekly action plans for energy end-users
with actionable, personalised information.

Edge computing infrastructures employed with deep rein-
forcement learning are of note, where intelligent systems as
in [15] are used for energy management in smart cities ecosys-
tems and p2p scenarios [16] where devices act as users while
in [17], the authors propose the use of an Edge-IoT platform
along with a Social Computing framework to develop a smart
energy efficiency system for public buildings. Forecasting
short-term future energy usage, an effective communication
between energy distributors and customers is presented in
[18]. Key contributions of the article include of real-time
energy management on edge devices through a shared cloud-
based data supervisory server, optimum normalisation method
selection, and an unique sequence learning energy forecasting
mechanism with decreased time complexity and error rates.

Energy demand prediction in hotels is a crucial aspect as
it aids the administrators to adjust their proportion of usage
to energy waste. With the use of advanced techniques for
intelligent hybrid modelling as indicated in [19], it is feasible
to predict the energy load in a hotel by integrating neural
networks and support vector machines.

Accident prevention is also an important sector in IoT in-
frastructures among transportation systems [20] smart vehicles
[21] [22] and modern city transportation infrastructures [23].
Similarly to accident prevention, real-time alert systems are
introduced in [24]. In a broader scope of smart cities, crash
avoidance systems are shown in [25].

Although each of the preceding works include a vast amount
of contribution to the scientific field, they do not incorporate
all the proposed models in an all-in-one scenario as the
microcontroller presented in the context of this paper.

III. METHODOLOGY

In this section the custom microprocessor is presented
as well as the methodology for the integration of Machine
Learning techniques using TinyML.

A. ZAC888-DP Microprocessor

The ZAC888-DP is a smart microcontroller designed to pro-
vide the user with the most pleasant, friendly, and accessible
experience possible in a given environment. It is used in either
homes or hotels, often one per room, since it can handle up to
eight lighting circuits, the opening and shutting of curtains, and
numerous inputs such as motion sensors in order to automate
several operations. Moreover, it interfaces with and controls
HVAC systems, DALI lighting, the DMX512 protocol, and a
number of other protocols. Its extensive connectivity is one of
its greatest benefits, and all of its features and capabilities are
outlined here.

1) Features: The ZAC888DP is an All-In-One device be-
cause it combines several roles as an intermediate or actu-
ator. Adjustments are made to eight channels of 5 Ampere
adjustable light intensity to enhance the lifespan of the lu-
minaires. With the same channels, we may open and shut
curtains, garage doors, water heaters, and adjust water pres-
sure. It features eight inputs for receiving basic connections,
as well as eight outputs for unlocking doors and locks with
low-current requirements. In addition, it is possible to control
up to 64 secondary devices in tandem for DALI luminaires.
Using the DMX protocol, we are able to control any RGB
lighting from our device, and a DMX console can control
the ZAC888DP. It connects to TCP/IP on the network and
communicates via the RS485 protocol through CAT6 cable.
In addition, there is a USB connection through which updates
may be installed. The energy metre, which computes usage
and establishes maximum cost limitations, is one of its most
essential components. This allows the gadget to define its
own safety boundaries, preventing overload or short circuit.
In addition to a built-in temperature sensor for its safety, it
cuts intensity at very high measures to prevent overheating. Its
aluminium structure is suitable for a panel rail. It has a colour
TFT technology screen that is controlled by 15 buttons for
menu and channel navigation. In addition, there are ten LEDs
that alert the user about the state of the channels and whether
or not communication and power are functioning properly. The
wires are terminated in detachable phoenix termination blocks,
making it extremely simple and quick to replace faulty devices.
Lastly, the ZAC888DP is an eco-friendly gadget due to its 0.35
Watt power consumption.

2) Functions: The startup screen of ZAC888DP is shown
in Figure 1. The details provided in the initial screen are as
follows: ID is the identification of the microcontroller unit. IP
is the IP address of the network. T Indicates the temperature
within the Bus device. R indicates if the device is operational.
P Indicates the energy used which is calculated hourly. OUT1-
8: Indicates if voltage is present at outputs 1-8. INPUT1-8:
Indicates if voltage is present at inputs 1-8. Loc01: Amb00C
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       ZAC888-IP           All-InOne Din Controller over IP. 8in-8out-8dimout  
                      Innovative " GuestRoom LifeStyle & EnergySave "  

 

 

Features                       The real All-In-One Solution.... 
Dimming: 
8 universal phase dimming OUTs. Hi Output 10A/Chan, 16A/All, ZeroFlick@ 1%Dim. C3 Precise Dimming Effect. 
Smooth Lamp ON/OFF will warranty maximum lamp lifespan, thanks to fade ON/ fade OFF. 

Switching: 
Gates, Doors, Pumps: WaterHeat, WaterReturn, WaterFall, Jakkuzi, etc. 

Shading: 
Blinds, Curtains Open/Close with Status. 
Smooth Motor Start/Stop will warranty maximum motor lifespan, thanks to Motor speed control. 

HVAC: 
UF, FCU-2pipes, FCU-4pipes, AC-IP, AC-IR. All GuestRoom Modes. 

Inputs: 
8 Inputs with Logic Priorities can connect to Occupancy sensors, Door contacts, Switches, Others. 

Outputs: 
8 Outputs to drive Locks of Gates, Doors, SafeBox, 10VPWM Dimming, IR-Control for AirConss, Others. 

Dali: 
Master out to control 64 slaves. 

DMX: 
DMX IN enables simultaneous control of ZAC848-IP from any DMX console & Keypad. Recording of Scenes Steps show. 
DMX OUT enables control of any sophisticated RGB/Moving fixtures. Static-StepChace-FadeChace-ColorSpeed Change. 

LAN: 
TCP/IP interface with embedded Web Server. Control & Monitoring over KNX/IP server. 

BUS: 
Industry Standard RS485 unencrypted protocol over CAT6 

USB: 
Upgrade, Backup Save & Download. 

Timer: 
8 Daily/Weekly/Monthly/Annual Astronomical Timers-100 steps each. 

Net Metering: 
Records  Energy Consumption, Cost. Set Consumption Limits. 

Commands Logger: 
Displays/Records all commands and messages. 

More:…. 
Future module expansion. 

Fig. 1. ZAC888DP Module

Set00C informs the user with the current room temperature
and (Set) setting.

Additionally, on the first page:
• Network: We set the ID, if our IP is static or dynamic, the

address as well as the other basic elements of a network
(mask, gateway, protocol, port).

• Channels/OUTs: Select the minimum and maximum lim-
its of each channel, and whether the output is dimmable
(0-100) or switch (0 or 100).

• SCENEs: We define the components that each scenario
will contain, in how much time it will have reached its
maximum or minimum, as well as whether we want it to
turn off automatically in a specific time frame. We can
also create script groups using Sequence. In the same
menu we program the DALI fixtures.

• TIMERs: We set the date time and hours of sunset and
sunrise (it can be done automatically from the network).
The main purpose of this menu is to set scheduled fixed
tasks, for example in winter to turn on the water heater
for two hours in the morning before the children leave for
school, and in summer to turn on 30 minutes since due
to temperature the water is already a good temperature.

• INPUTs: In the Inputs menu the user can choose whether
the contact will work with logic normally open, normally
close, toggle etc. and what it will activate after firing, this
could be done once or repeatedly as well as throughout
the day or at specific times.

• HVACs: The control of all possible heating, ventilation
and cooling systems is done here with possible choices
from underfloor heating to air conditioners using IR
among others. We also define which will be the tem-
perature sensors and the preset values that the user can
choose.

• DMX: Activate and specify as input or output of the
protocol in relation to our device. COLOR MACROS:
Adjusts the speeds when the automated scenarios are
running with RGB lights.

• PROTECTIONs: This menu is quite important, in which
we define the overload and overheating but also the limits
at which the ZAC888DP stops being fully functional in
order to achieve the drop of loads and local temperature.

3) Room Management System: ZAC888DP module is suit-
able for efficient room management as it focus on energy sav-

ing among automations. For example, when doors or windows
are opened the Air-conditioning device are turned off in order
to maximize energy saving. Additionally, the device can utilize
maximum and minimum values for a specific device so as
when these limits are met, certain actions are taken. This can
lead to a 5-20% energy saving due to our findings based on
the data from hotels that our device is deployed.

4) A Real Green Product: The aim of the ZAC888DP
product is to not only maximize energy savings, but at the
same time to pay the minimum electricity required for the
appliances unitized. For example, for one room utilizing the
ZAC888DP device we have:

10mA controller + 5mA thermostat + (5mA sensors × 2)×
24volts = 0.5Watt

(1)
while by taking the scenario (1) and applying it to 300 hotel

rooms we have the scenario (2).

300× 0.5W/controller/room =

150W → 0.150KW × 24hours ×¤0.21/KWh =

¤0.756/day → Total: ¤ 276 /year
(2)

While if we use scenario (1) for any other system we have
scenario (3).

10W/Room (3)

As every other room utilizes its own power supply. As
anticipated, a massive increase from 0.5 watts to 10 watts will
also increase the power cost required.

By taking the scenario of any other system from (3) and
applying it to a 300 room hotel we have scenario (4).

300× 10W =

3000W → 3KW × 24hours ×¤0.21/KWh =

¤15.12/day → Total: ¤ 5,519 /year
(4)

That is an astonishing 95% savings originating only from
the system consumption. The system operates on a wired
network and is powered over Bus (PoB) allowing us to make
use of one central intelligent and industrial degree SMPS to
limit 240VAC to 24VDC conversion losses to one only and
not to 300 as with the case of system using Distributed Power
Supplies.

During operation of the system, no extra energy loss is
added as the system utilizes its own latching relays. These
relays have zero consumption while all other type of relays/-
contactors will add extra cost to the energy required. Note
that, wireless systems also have an extra cost as they require
battery replacements every 2 years.

B. Simulation interface

In this section we outline the interconnection among
ZAC888DP and ESP32, a lightweight microcontroller for
TinyML integration in the proposed system so as to create
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an environment close to real-world for accident prediction. In
our experiments, sensors where utilized that measured light
intensity, water content, humidity, and temperature. Using
these four factors, we could recreate the lavatory environment
as closely as possible to real-world scenarios. Our objective is
to trigger the user’s accident-prevention systems when certain
situations coincide. For almost 35 days, tens of thousands of
values were sampled using the Arduino IDE and the Ardu-
spreadsheet extension in order to get a reasonably accurate
data set and improve the precision of our model. The samples
of the measurements are within a 5-minute interval rate.

60

5
= 12\hour, 12×24 = 288 per day,

10000

288
= 34, 72 days

(5)
Initially, the light factor is one of the most significant de-

terminants of potential accidents, as the chance of occurrence
in any part of the home quickly rises in the absence of
illumination. As sliding in the restroom is a regular hazard,
we were then given water pricing. Through our DHT-11
sensor, we obtained data for humidity and temperature that
are significant, particularly when they are extremely high.
Therefore, we assign weights of 50% to the brightness, 30%
to the volume of water, 10% to the humidity, and 10% to the
temperature for our four variables. The sensors for water and
light are analogue, whereas the sensors for temperature and
humidity are digital.

This indicates that the first two numbers range from 0 to
4095, which corresponds to the analogue subdivision after its
digital conversion. To apply the proposed model, we therefore
normalise the numbers so they are all in between the [0, 1]
range. To perform so, we use the formula as in (6).

x′ =
x−min(x)

max(x)−min(x)
(6)

where x is the value we get each time and the min/max
the maximum and minimum that can be sampled by our
sensor. Then, we select the threshold at which, after applying
the normalised data and considering the weights, we have a
considerable risk of dropping, at 0.75. The formula is as in
(7). The variables below water, light, humidity and temp, refer
to the normalized values

0.3×Water+0.5×Light+0.1×Humidity+0.1×Temp (7)

By utilizing supervised learning, the output is 1 for every
result over 0.75 possibility and 0 otherwise. The following
table provides a summary of the preceding variables.

The accurate and efficient implementation of TinyML,
TensorFlow, Arduino Ide, and ESP32 needs a sequence of
particular processes. In the computer language Python, where
our model is trained, we input our data through a csv file.
Then, we present the TensorFlow libraries and develop the
calculation procedure for the issue we want to solve by
using them. At the conclusion of the course, we will convert
our outcomes into a hex file and register this table in the

TABLE I
DATA DISTRIBUTION AND NORMALIZATION

Water Level Light Value Humidity Temperature
Weight 0,3 0,5 0,1 0,1

Minimum 0 4095 20 0
Maximum 4095 0 90 50
Normalize x

4095
x−4095
4095

x−20
70

x
50

Possibility (P) Formula (7) Formula (7) Formula (7) Formula (7)

Arduino IDE environment. Finally, we will upload it to our
microprocessor and provide different control values through
our sensors to see whether our model has been successfully
implemented. Algorithm 1 presents the model execution as
well as the inner workings of the proposed system.

Algorithm 1 Accident Prevention Alert System (APAS)
Require: Water, Light, Humidity and Temperature Values
Ensure: Accident Prevention Alert System

1: for 0.3×Water+0.5×Light+0.1×Humidity+0.1×Temp
do

2: Set threshold value of alert −→ 0.23
3: Calculate likelihood of alert
4: if Formula value of step 1 > 0.23 → formula = 1 then
5: Return result as ALERT
6: Trigger the alert system
7: else if Formula value of step 1 < 0.23 → formula = 0

then
8: Return result as FINE
9: end if

10: end for

For the model creation, the pandas and numpy libraries
are imported. The pandas library is used to read the data
from the csv file, while the numpy library is used to modify
it. Then, we provide the train test split technique, which is
used to divide our data set into training set and evaluation set.
In addition to the confusion matrix, we import from sklearn
the evaluation metrics of the model that we will show at the
conclusion of our work. For the data representation we also
utilize the matplotlib as the plotting library, which enables
the creation of graphs. Next, we import the applicable model
and field from the TensorF low library, to perform Machine
Learning techniques.

We begin by reading the data and converting it to the
desired format. Then, we divide our data into input and output
components. For the output, we set the value 1 when ”Alarm”
is present, i.e., when the specified threshold is met. After
establishing the input and output, we split the data into training
and evaluation data, with training accounting for 67% and
evaluation comprising the remaining 33%. Using the methods
of the relevant library, we transform the data sets to a numpy
array format before concluding. We use the Sequential model
to which we have added a Dense layer containing a neuron that
predicts the output. The sigmoid function is utilized, which
applies logistic regression, as the activation function. When
compiling, the loss counter is defined as ’binary crossentropy’
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HEX

Fig. 2. Steps of model training and deployment

and ’rmsprop’ optimizers, as well as the measure ’accuracy’.
The model is trained for 256 episodes, and based on the
assessment of the input dataset, we create a forecast and set
the warning threshold to 0.23. Having trained the model, the
presentation and analysis follows using the described metrics
precision, recall, accuracy, and F1 Score. We generate the
Confusion matrix and assign the real values from the Dataset
to the y test and temp input variables, respectively. Next, we
display the plots of accuracy and loss for both training and
validation of our output data in proportion to the 256 epoches
that represent the number of model learning attempts specified.
Using the converter, we do the required conversion from keras
to tflite and export our model to the converted model tflite file.

To start the integration process of the pre-trained machine
learning model, we imported the EloquentT inyML Tensor-
Flow libraries and the digit model files that our model resides
in, as well as DHT in order to use sensor-specific components.
Next, we specify the distance from our CPU at which our
sensors will be placed. At 22 the DHT11 was inserted, at
36 the water sensor (active when it receives values through
13), and at 39 the light sensor. For our model, we define four
inputs, one output, and its function.

Finally, we regulate our threshold to trigger the Alarm and
the input of ZAC888DP by setting Y PIN to low, therefore
engaging the preventative measures and producing a possible
difference in the input of our device. With the delay instruc-
tion, the whole procedure within the loop function is repeated
every 2 minutes.

Fig. 3. Model

IV. EXPERIMENTAL RESULTS

In this section the assessment of our model takes place
by metric evaluation and using the approach of confusion
matrix measuring how many of our binary outputs have been
classified properly. In addition, instances of usage and their
consequences are described. Having split our data set into
67% training and 33% validation, we have determined that
our total number of instances is 3299 (9996 total examples).
The following metrics are calculated:

Accuracy: =
TP + TN

TP + TN + FN + FP
(8)

Precision:
TP

TP + FP
=

241

241 + 138
(9)

Recall:
TP

TP + FN
=

241

241 + 0
(10)

F1-Score:
2× ( Recall × Precision )

Recall + Precision
(11)

Results for Eq.(8),(9),(10),(11) are summarized in Table II.
The accuracy is sufficiently high at 94.11% while the recall
score is 100%. The precision metric appears low at 63% but
this is due to the algorithm’s aggressive threshold at 0.23 value.

TABLE II
EVALUATION METRICS

Metric Score
Accuracy 94.11%
Precision 63.58%

Recall 100.00%
F1-Score 77.30%

The next two Figures 4 and 5 examine the accuracy and
loss of the 256 training attempts of the model in detail.
The blue line indicates training, whereas the orange line
shows assessment/validation of findings. The model accuracy
is sufficiently high and the model loss is acceptably low.

0 50 100 150 200 250epoch
0.88

0.90

0.92

0.94

0.96

ac
cu
ra
cy

train
test

Model Accuracy

Fig. 4. Model Accuracy

Below, Figure 6 shows the confusion matrix and the distri-
bution percentages of the results.

A. Use cases

Four instances of particular scenarios that we would want to
explore are provided below. The conditions are the following:
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Fig. 6. Confusion Matrix based on the ML model

• During the day, either natural light or the lights of the
room are on.

• Water is detected only when one is careless and creates
water sources in specific locations.

• Despite low gravity and influence on our output, temper-
ature and humidity remain at normal levels because we
are discussing indoor space and the user can control these
values.

Consequently, we have two instances of normal measurements:
one that eventually has a Fine impact but is near the limit,
and one that is at the extremes and immediately generates an
Alarm signal.

Use Case I: Normal values - Fine Result. Zero quantity of
water, high light intensity, low humidity, and normal room
temperature result in very low normalised values and the
output of 0.00 with the indicator that everything is OK. The
results for this use case are shown in Table III. In this use case,
the output of formula (7) is 0.00 as each of the normalized
values is zero.

Use Case II: Normal values - Fine result. Partial quantity of
water, medium-intensity illumination, low humidity, and nor-
mal to low room temperature all contribute to low normalised

TABLE III
SIMULATION USE CASE I

Values Water Light Humidity Temperature
True Variables 0.00 3930 41.00% 24.80℃

Norm. Variables 0.00 0.04 0.30 0.50
Output 0.00
Result Fine

values and, therefore, the output of 0.00 with the indicator that
everything is well. The results for this use case are shown in
Table IV. In this use case, the output of formula (7) is 0.00
as most of the normalized values are zero except light value.

TABLE IV
SIMULATION USE CASE II

Values Water Light Humidity Temperature
True Variables 1194.00 1852.00 29.00% 21.00℃

Norm. Variables 0.29 0.54 0.12 0.38
Output 0.00
Result Fine

Use Case III: Borderline values - Fine Result. Partial
quantity of water, very low light intensity, high humidity,
and normal room temperature result in pretty high normalised
values and an output of 0.22, which is marginal since 0.23 and
above triggers an alert, therefore in this case we get a Fine
signal. The results for this use case are shown in Table V.
In this use case, the output of formula (7) is 0.00 as most of
the normalized values are zero except light value. The overall
output of the formula is 0.22 which is borderline value as from
0.23 and so on the alarm is triggered.

TABLE V
SIMULATION USE CASE III

Values Water Light Humidity Temperature
True Variables 1626.00 90.00 81.00% 21.40℃

Norm. Variables 0.39 0.94 0.87 0.42
Output 0.22
Result Fine

Use Case IV: Extreme Values - Alarm Result.
Extremely large amounts of water, low light intensity, high

relative humidity, and normal room temperature result in
extremely high normalised values and the output of 0.74 with
an alarm indicator. The results for this use case are shown in
Table VI. The overall output of the formula is 0.74 which is
high value compared to 0.23 where the alarm threshold exists.

TABLE VI
SIMULATION USE CASE IV

Values Water Light Humidity Temperature
True Variables 3580.00 400.00 80.00% 21.80℃

Norm. Variables 0.87 0.90 0.85 0.43
Output 0.74
Result Alarm
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V. CONCLUSIONS AND FUTURE WORK

In the context of this work, a method for preventing and
informing users of potential lavatory accidents was developed.
To perform so, recent and suitable solutions as well as tech-
nologies that have emerged in recent years and seem to have
much to offer the IT sector and human existence are utilized.
We use the ZAC888DP device, which is a sturdy and favoured
option for smart building installations on the market along with
ESP32, a suitable alternative for a low-cost device, which was
used to build our data collection in conjunction with sensors
measuring water, temperature, humidity, light, and motion.
Following a brief examination of related works, we concen-
trated on supervised learning specifically linear regression that
yields a binary outcome based on the sigmoid function for
model creation. TensorFlow was also utilized for TinyML
integration with outstanding efficiency and dependability for
the development of a forecasting and information system for
user-dangerous scenarios. The model was built in Python and
converted using TensorFlow lite before applying it to ESP32
and transferring the result to ZAC888DP, which activates the
warning systems. Finally, evaluation metrics are used for the
pre-trained machine learning model.

Future directions of this work include the assessment of
additional values and parameters for more precise findings, the
establishment of a connection with a mobile device of a user
and the delivery of push notifications. The notifications issued
by ZAC888DP, to alert the reception in the case of a hotel, will
also forward the notice to the user. Moreover, another future
direction is the use of wireless sensors instead of wired sensors
for the implementation of the system in preexisting structures
along with using IoT devices on-site to get additional data
for model training. The ML model developed may be utilized
to avoid accidents in various environments, such as nursing
homes, by modifying the input parameters of the algorithm.
In order to compare with actual numbers, the data collecting
mechanism can be deployed in a real world deployment, and
in the event of an accident, there must be an entry file and
the value must be set at any given moment enabling us to
determine if our settings and findings are precise.
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