
On Autonomous Drone Navigation Using
Deep Learning and an Intelligent

Rainbow DQN Agent

Andreas Karatzas1, Aristeidis Karras1 , Christos Karras1(B) ,
Konstantinos C. Giotopoulos2 , Konstantinos Oikonomou3 ,

and Spyros Sioutas1

1 Computer Engineering and Informatics Department,
University of Patras, Patras, Greece

{akaratzas,akarras,c.karras,sioutas}@ceid.upatras.gr
2 Department of Management Science and Technology,

University of Patras, Patras, Greece
kgiotop@upatras.gr

3 Department of Informatics, Ionian University, Corfu, Greece
okon@ionio.gr

Abstract. Drones are intelligent devices that offer solutions for a con-
tinuously expanding variety of applications. Therefore, there would be a
significant improvement if these systems could explore space automati-
cally and without human-supervision. This work integrates cutting-edge
artificial intelligence techniques that allow drones to travel indepen-
dently. Following an overview of reinforcement learning methods built
for discrete action space settings, a multilayer Perceptron model is con-
structed for feature extraction along with Hybrid neural networks. The
agent employed in the experiments is a Rainbow DQN agent trained on
the AirSim simulator. The experimental results are encouraging as the
agent was tested for 16 missions and the accuracy was higher than 93%.
In particular, the success for action selection was 97% and 93 for mission
success. Finally, future work related to the navigation of autonomous
drones is discussed including current concepts and methods of integra-
tion with more sophisticated algorithmic approaches.

Keywords: Drones · Autonomous drone navigation · Deep learning ·
Reinforcement learning · Intelligent agents · Swarm intelligence · UAV

1 Introduction

The area of autonomous robotics is rapidly growing due to the range of tasks that
robots can perform [7]. Examining a number of missions done by such robots,
it is discovered that there is an increase in risk. In many of these instances, the
integrity of the human workers sent at the point of dispatch is at danger. As the
operator is removed from the hazardous shipping point, robots arrive to handle
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Yin et al. (Eds.): IDEAL 2022, LNCS 13756, pp. 134–145, 2022.
https://doi.org/10.1007/978-3-031-21753-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21753-1_14&domain=pdf
http://orcid.org/0000-0002-4632-6511
http://orcid.org/0000-0002-4253-7661
http://orcid.org/0000-0001-5989-6313
http://orcid.org/0000-0001-7279-9710
http://orcid.org/0000-0003-1825-5565
https://doi.org/10.1007/978-3-031-21753-1_14


On Autonomous Drone Navigation 135

the situation. Because of their usefulness, robots have been mass-produced. In
addition to ground robots, there are also flying robots which keep the scientific
community busy. Researchers are concerned about the autonomy of such systems
[6]. This specific difficulty is intriguing, as groups of unmanned aerial vehicles
(UAVs) now take off frequently. Coordinating various systems with a shared goal
might provide a solution in a variety of circumstances, such as forest patrols,
identification of suspicious behaviour in stalking instances, etc.

When studying designs of autonomous computer systems for unmanned aerial
vehicles, the subject of accessible information arises, i.e., what information is
available that may be utilised by the system to solve the autonomy problem?
The standard sensors of an unmanned aerial vehicle are: i) Camera(s) ii) Radar(s)
iii) a Time-of-flight sensor and iv) a LiDar Sensor [8].

Other than the first sensor, the others contribute to obstacle detection in an
unknown areas. The camera of the UAV gathers all required information. Using
image processing techniques mixed with new approaches of artificial intelligence,
there are presently systems that can do remarkably well in such tasks given the
right circumstances [2]. Typically, the sole stipulation is that there must be
sufficient light for the camera to capture the required information in fine detail.
Smaller resolution might entail higher uncertainty about the solution the system
software will compute at its output, and hence there might be an increase in risk.

2 Preliminaries

A challenge in reinforcement learning (RL) may be characterised as a Markov
process decision consisting of four sets [1] 〈S,A,R, T 〉. S is a limited collection
of training circumstances experienced by the agent. The information provided
by the environment at the input of each training cycle for the agent configures
the current state of the agent. The A is a limited collection of responses to a
circumstance from which an agent may pick. R(s, a) computes the reward offered
to a state s after an action a. HT (s, a, ŝ) → [0, 1] is a potential transfer function.
It specifies the likelihood of transitioning from state s to state ŝ after action a.
The functions R(s, a) and T (s, a, ŝ) solely rely on the current values of s, a, and
ŝ. The probability density of a Markov decision process is defined as follows:

Pr {st+1 = ŝ, rt+1 = r | st, at, rt, st−1, at−1, . . . , r1, s0, a0} (1)

Equation (1) is a specific example of the more general situation in which the
present state also relies on earlier states and actions (2).

Pr {st+1 = ŝ, rt+1 = r | st, at} (2)

When Eq. (1) is equivalent to Eq. (2) for all ŝ, r and the sequence of form
st, at, rt, s1, a1, r1, s0, a0, r0 then the case holds the Markov property.

When investigating RL algorithms, the value of the Markovian property is
substantial. However, in the majority of cases, agents do not have access to all of
the data hence, there is concealed state data, preserving the Markov condition.
Such data are described as Markov decision processes that are partly observable.



136 A. Karatzas et al.

2.1 Value Function

Each training cycle is comprised of the agent observing a state and executing one
action. The mapping between state and action is known as policy π. Specifically,
the chance of selecting an action a in a given state s under policy is specified by
the probability function V π as π(s, a) → [0, 1] as defined by Eq. (3).

V π(s) = Eπ {Rt | st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}
(3)

In Eq. (3), Eπ is the expected value received by agent if follow policy π for
a state st. Equation (3) can be rewritten, as shown in Eq. (4), as the sum of the
rewards presented in the training cycles performed by the agent.

Vπ (st) ≡ rt + γrt+1 + γ2rt+2 + · · · =⇒ Vπ (st) ≡
∞∑

k=0

γkrt+i (4)

In Eq. (4), the factor γ ∈ [0, 1] is a degradation value of this sum so that
the most recent rewards gain more weight. An equally important concept is the
function Qπ, also known as the energy function and payoff for policy π. Qπ is
the expected payoff having chosen an action a in a state s and following policy
π. The function Qπ(s, a) is given by Eq. (5).

Qπ(s, a) = Eπ {Rt | st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s, at = a

}
(5)

The goal when training a RL agent is to approximate the policy that max-
imizes the sum of rewards over time. The optimal policy is denoted by π∗ and
the value function which returns the maximum accumulated reward to the agent
in a state s following the optimal policy π∗ is denoted by V ∗(s) and is called
the reward function. Q∗(s, a) is the optimal function of reward, and means the
expected reward of choosing an action a in a state s following the optimal policy.

2.2 Multilayer Perceptron Neural Networks

Perceptron multilayer neural networks are composed of many layers of
perceptron-type neurons. Perceptron neurons receive input data through the
forward propagation technique and are trained using the reverse propagation
algorithm. Input vector is received by the first layer of Perceptron neurons.
Subsequent layers change the input vector using two parameters: the numeri-
cal weight of synapses between neurons at the various levels and the non-linear
activation function that follows the output of each neuron.

A multi-layer Perceptron neural network employs a collection of numerical
samples created by certain controlling features for each class in the set of classes



On Autonomous Drone Navigation 137

throughout its training. The format of the produced sample set is X matrix, as
shown in Eq. (6).

X =

⎡
⎣ | | · · · |

x(1) x(2) · · · x(m)

| | · · · |

⎤
⎦ (6)

In Eq. (6), each vector x(i) has dimension n, where n is the number of the
attributes used to code the classes. Therefore, it holds that X ∈ R

nx,m, where
m is the number of training samples. Same as the registry X, there is also the
Y register in which the desired output of the after model is stored from the
transformation of the input data, which is shown in Eq. (7). Each element y(i)

of register Y has a number representing the class it belongs to the sample i.
Therefore, it holds that Y ∈ R

i,m.

Y =
[
y(1) y(2) . . . y(m)

]
(7)

From the forward propagation of the X matrix in the model, intermediates
arise transformations of the matrix X. The matrix A in each hidden level j of
the neural network is defined as in Eq. (8).

A[j] =

⎡
⎣ | | . . . |

a(1)[j] a(2)[j] . . . x(m)[j]

| | · · · |

⎤
⎦ (8)

The synapse weights of a multi-layer Perceptron neural network for one layer
j are described in Eq. (9).

W [j] =

⎡
⎢⎢⎢⎢⎣

w
[j]
1,1 w

[j]
1,2 · · · w

[j]
1,m

w
[j]
2,1 w

[j]
2,2 . . . w

[j]
2,m

...
...

. . .
...

w
[j]
n,1 w

[j]
n,2 · · · w

[j]
n,m

⎤
⎥⎥⎥⎥⎦ (9)

In Eq. (9), the subscript n refers to the number of neurons in layer j-1, while
the index m refers to the number of neurons in level j. At each level j, there
is also a special neuron called a threshold. Threshold has no synapses with the
previous level. A constant is stored in the threshold which is propagated only
at the respective level. Considering bj the threshold at a level j, then Eq. (10)
describes the forward propagation result algorithm from a level j-1 to a level j.

Z [j] =
(
W [j]

)T

× A[j−1] (10)

Threshold b[j] is added to each element of register Z [j]. Then, it takes effect
in the register a non-linear function called the activation function. With the
activation function, the model can categorize the samples of the set education.
In case there is no trigger function, then the model performs a simple linear
transformation of the input data and therefore will not learn complex patterns.



138 A. Karatzas et al.

If g(·) is the activation function, then at the end of a cycle forward propagation
of the neural network, the result shown in Eq. (11).

A[j] = g
(
Z [j] + b[j]

)
(11)

3 Methodology

3.1 Deep Q Networks

Deep Q-nets were developed as a result of the necessity for an algorithm capable
of tackling a broad variety of issues. It integrates reinforcement learning concepts
with artificial neural networks. The development of complex topologies for arti-
ficial neural networks, which use additional layers of neurons for more effective
generalisation and pattern recognition, made it feasible for machines to learn cat-
egories from raw data. Deep Q networks primarily take tensors as input; hence,
deep convolutional networks are used for the identification of needed standards.
At the model’s input, the tensor shells are pictures of a single channel.

Deep Q networks solve challenges involving agent-environment interaction.
In particular, it posits that the agent may observe a circumstance, choose an
action, and get a reward. The agent’s objective is to choose the sequence of
behaviours that accumulates the greatest potential amount of rewards over time.
Specifically, a neural network with deep convolution is employed to approximate
the ideal energy-reward function shown in Eq. (12).

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + . . . | st = s, at = a, π

]
(12)

Equation (12) expresses the maximum sum of rewards rt reduced by a factor
γ in each training cycle t. This sum can be achieved following the behavior
defined by the policy function π = P (a | s) in a state s performing action a.

Neural networks like other non-linear methods until the discovery of deep
Q networks were considered unsuitable for approximating the function energy-
reward (also known as Q function). The difficulties are enough, such as for exam-
ple small changes in the Q function that can produce large ones changes in agent
policy. The concept of deep Q networks uses experience repetition mechanism
that solves the problem of correlating similar data in a time sequence by reduc-
ing the rate of change of the data distribution. The second element of deep Q
networks is the iterative update of the Q function in order to more accurately
approximate the optimal energy-action function Q∗.

A tuple is stored to implement the iterative mechanism et = (st, at, rt, st+1)
at each training cycle t forming a data set Dt = e1, . . . , et. During learning,
refreshes are applied following the method of learning Q on samples (chunks) of
experiences (s, a, r, ŝ) ∼ U(D), which are chosen in a random fashion following a
uniform distribution from the set Dt. For implementation of the iterative renewal
mechanism introduces a new neural network itself architecture with the model
used to train the agent.



On Autonomous Drone Navigation 139

The second model Q̂ aims to estimate the optimal energy. Every t training
cycles, Q̂ is synchronized with model Q. This change stabilizes Q̂ algorithm as it
deals with small but often unwanted changes in agent policy that would occur at
the end of each training cycle. Thus, based on [5], the refresh learning following
the learning method Q in an iteration i is configured from the cost function
described in Eq. (13).

Li (θi) = E(s,a,r,ŝ)∼U(D)

[(
r + γ max

â
Q

(
ŝ, â; θ−

i

)
− Q (s, a; θi)

)2
]

(13)

In Eq. (13), the θi are the parameters of the neural network Q during iteration
i and the θ−

i are the parameters of the neural network Q̂ used for the estimation
of the best possible energy during repetition i. Traffic information of the agent
in the environment is formed by combining 4 consecutive single frames channel.
To avoid overtraining, except for the conversion done in each frame from color
to grayscale, the frame is also cropped from 210 × 160 to 84 × 84. Thus, variable
s, which is the convolutional neural network input is a 4× 84 × 84 tensor size.

3.2 Double Deep Q Networks

One of the new concepts that appeared in deep Q networks was the usage sec-
ond neural network to estimate the optimal policy, in parallel with one neural
network operating during agent training. In this way, the agent is not affected
by small changes in policy and the training process converges as only after a
number t training cycles does synchronization occur of the Q model with the
Q̂ model. However, this can also lead to overestimation of the objective as the
same maximization operator is used, as shown in Eq. (13).

With the algorithm of double deep Q networks a separate operator is intro-
duced maximization for the Q̂ model. Therefore, there is a separate selection
operator energy and a separate energy evaluation operator. Also, the policy that
is modeled by the ε-greedy method is evaluated by the Q model, but the reward
estimated by the model Q̂. Based on [9], the policy update for the double deep
algorithm Q of networks can be described as in Eq. (14).

Y Double DQN
t ≡ Rt+1 + γQ

(
St+1, argmax

a
Q (St+1, a; θt) , θ−

)
(14)

3.3 Learning with Multiple Training Cycles

The method adopted for solving problems with RL methods uses the model
of Markovian decision processes. According In this decision model, an agent
interacts in an environment for a series training cycles t. In each training cycle,
the agent receives information for the environment state St ∈ S, where S is
the set of all possible situations. The agent uses this information to choose an
action At from the set of all possible actions A. Based on the agent’s behavior in
state St ∈ S, a payoff Rt+1 ∈ R is calculated and the agent moves to next state



140 A. Karatzas et al.

St+1 ∈ S with a state transfer probability p(ŝ | s, a) = ŝ | St = s,At = a), for
a ∈ A and S, ŝ ∈ S. The behavior of the agent is determined by policy π(a | s)
follows, which is a probability distribution over the set S × A.

During the training of the agent, the optimal policy π∗ is formulated that
maximizes the estimated reduced total reward, as described in Eq. (15).

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
T−t−1∑

k=0

γkRt+1+k (15)

Algorithms following the time difference method aim to maximizing the
amount of Gt. The state-value function describes the estimated performance
when the agent is in a state s and follows policy π, as shown in Eq. (16).

uπ = E [Gt | St = s] (16)

At the center of the agent’s training is also the energy function-value, which is
the estimated payoff when the agent chooses an action a over a state s following
policy π, as shown in Eq. (17).

qπ = Eπ [Gt | St = s,At = a] (17)

Equation (17) can be calculated iteratively by observing new rewards based
on previous estimates of qπ and using the renewal rule that shown in Eq. (18).

Q (St, At) ← Q (St, At) + α [Rt+1 + γQ (St+1, At+1) − Q (St, At)] (18)

In Eq. (18), the constant α ∈ (0, 1] is the cycle length parameter education.
The time difference method can be extended to more cycles education. By care-
fully choosing a parameter n > 1 improved results can be obtained results when
training an agent. The result is Eq. (19), which shows the update rule used for
learning with multiple cycles of training [3].

Qt+n (St, At) ← Qt+n−1 (St, At) + αρt+n
t+1 [Gt:t+n − Qt+n−1 (St, At)] (19)

In Eq. (19), the estimated return Gt:t+n for an agent using learning n training
cycles is given by Eq. (20).

Gt:t+n =
n−1∑
k=0

γkRt+k+1 + γnQt+n−1 (St+n, At+n) (20)

In Eq. (19) and Eq. (20), the quantity Qt+n−1 is the estimate of the function
qπ at time t + n − 1 and the subscript t : t + n denotes the renewal duration.
Also, in Eq. (19), the term ρt+n

t+1 sets the sampling mode so that they are selected
proportionally the most important samples and is described by Eq. (21).

ρt+n
t

τ∏
k=t

π (Ak | Sk)
μ (Ak | Sk)

(21)

In Eq. (21), the variable τ = min(t + n − 1, T − 1) is the training cycle until
the end of the refresh step.



On Autonomous Drone Navigation 141

3.4 Rainbow Agent

A Rainbow agent is a combination of all the previous methods (Sects. 3, 3.2, and
3.3). First, the learning duration is increased, as described in Sect. 3.3 using n
training cycles for learning. The multiple cycle learning method training is also
combined with the dual deep Q network method using the action obtained by
following the ε-greedy method in the state St+n. Finally, the architecture of the
model is conflicting, and on the pathways used to assess benefit and value noise
is introduced from a NoisyNet model. Rainbow agent hyperparameters are given
in Table 1, as they were optimized. The Rainbow agent [4] successfully combines
all previous enhancement learning techniques, as shown in Fig. 1.

Table 1. Hyperparameter table of a Rainbow agent.

Hyperparameter Value

Minimum training cycles before learning 80.000

Adam optimizer Training rate 0.0000625

Parameter ε 0.0

Parameter σ0 for NoisyNet models 0.5

Synchronization interval between Q̂ and Q model 32.000

Numerical stability parameter ε for the Adam optimizer 0.00015

Precedence exponent ω 0.5

Importance parameter β for priority sampling 0.4 −→ 1.0

Parameter n for learning with multiple training cycles 3

Sets of groups in the N value distribution 51

VMIN , VMAX [−10, 10]

3.5 Problem Formulation

On the complex problem of autonomy in navigation for unmanned aerial vehicles
a Rainbow agent was created [4]. Two different ones were created architectures
at the Q model level. In the first case, the kernel that uses the agent to extract
the necessary patterns from the environment is a multilayer Perceptron neural
network, while the second kernel was hybrid. As a core characterizes the model
that processes the input data before passing through the advantage and value
paths of the overall Q model. The tasks of the agent are as follows:

1. The agent is asked to move from a reference point
〈
x0 y0 z0〉 to a target

point
〈
x1 y1 z1〉 , with x0 
= x1, y0 
= y1 and z0 
= z1.

2. The agent shall not collide with any object during its transition in the target.
3. The agent should try to reach the shortest known1 route.
1 The agent is not aware of the map, i.e. the layout of the obstacles. However, he knows

the direction where the target is located. Therefore, it can estimate the direction to
shift it with a larger one pace to target.



142 A. Karatzas et al.

Fig. 1. Comparison between the rainbow agent and reinforcement learning methods.

To satisfy all 3 missions, the agent needs more information from the image
given by the depth camera. Therefore the classical deep architecture Q network
should be transformed according to the needs of the problem. As result, instead
of convolutional neural network, tests were done using 2 different cores: using
a) Multilayer Perceptron Neural Network and b) Hybrid neural network which
consists of: Convolutional Neural Network Core, Core Perceptron Multilayer
Neural Network, Fully cohesive layer for combining features from cores.

The idea behind the multi-layer Perceptron neural network is that it can
process the information it receives from the depth camera along with the nec-
essary information about its location in the environment and the location of
the target. The state of St agent at time t is a vector of: i) The preprocessing
image of depth Dt, ii) The position vector of the agent Pt =

〈
xt yt zt

〉
, iii) The

position vector of the agent Pt−1 =
〈
xt−1 yt−1 zt−1

〉
in the previous time, iv)

The position vector of the target T = 〈xT yT zT 〉 and v) A scalar lt floating
point that informed the agent how many actions he has done up to time t. The
agent could do up to 4 times more actions than the optimal estimated number
of actions. The optimal estimated number of actions was obtained by summing
the number of steps that the agent pays if he always chooses a reducing action
among its distance from the target.

Preprocessing on the depth image consists of a basic image transformation
in gray scale followed by a transformation to smaller dimensions and finally a
crop of the result to its center so that it has the same dimension the length by
the width. Thus, the depth image is transformed from 3 × 210 × 160 to 84 × 84.
Finally, the depth image is normalized to the range [0, 1] by dividing it by the
maximum possible value which is 255. The result is the matrix Dt.

The matrix Dt is transformed into a column vector Dfl
t and then joins with

remaining input parameters Pt, Pt−1, T and lt shaping its state agent St at time



On Autonomous Drone Navigation 143

t. The available actions are 6. In the experiments of the work, the displacement
step was 1 m. The payoff at each step was given by Eq. (22).

Rt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−100 in the event of a collision with an obstacle,
100 upon completion of the mission,
−10 if lt <= 0,
−10 in case of early landing
Dt−1 − Dt otherwise

(22)

In Eq. (22), the quantity Dt is the distance of the agent from the target in
time moment t. The same quantity Dt−1 is the distance of the agent from the
target in time t − 1. The distance is calculated according to Eq. (23).

Dt = Pt − T (23)

4 Experimental Results

During the experiments the performance of the agent is evaluated across 16
different targets. To create a simulation interface, the software AirSim was used2.
The results for the Multilayer Perceptron Neural Network are shown in Table 2.
Moreover, the training evaluation is shown in Fig. 2. The results for the Hybrid
Neural Network are shown in Fig. 3.

Table 2. Percentage of success/failure for action selection and mission completion.

Evaluation Result Percentage

Percentage of action selection as per target Success 97.3%

Percentage of action selection as per target Failure 2.7%

Percentage of success across 16 missions Success 93.8%

Percentage of success across 16 missions Failure 6.2%

Av
era

ge 
Co

st

Av
era

ge 
Re

wa
rd

Fig. 2. Results of the rainbow agent as per average cost and average reward.

The Perceptron multi-layer neural network core agent has been shown to work
very satisfactory. However, it showed inability to make a decision in cases where
was faced with an obstacle of great dimensions. To solve the problem, a hybrid
2 https://microsoft.github.io/AirSim/.

https://microsoft.github.io/AirSim/


144 A. Karatzas et al.

architecture was tried. The entry of the new Q model consists of the matrix Dt

and the vector Vt which is the concatenation of Pt, Pt−1, T and lt. The model Q
consists of a deep convolutional neural network for efficient extraction features
from the Dt matrix and from a deep multi-layer neural network Perceptron for
feature extraction from vector Vt. The characteristics of 2 cores are joined at a
common plane, called the union plane. The level union is an input layer for a
deep multilayer Perceptron neural network, the association model.

The computational resources required to train the agent were very high more
than available. Notable was the maximum possible memory size of repeating
experiences according to the system memory used for the experiments. The max-
imum experience memory size was 50,000 samples. Also, for for speed reasons,
prioritized replay memory was implemented using segment tree3. The partition
tree belongs to the family of binary trees and therefore the agent instead of 50,000
items in memory could only load 2�log2 50.000� = 215 = 32.768 experiences. As a
result, model training was not able to be completed fully.

Fig. 3. Training of multi-layer neural network as per feature extraction from Vt.

After training the 2 kernels, it remained to train the union model. Keeping
the parameters of the 2 cores fixed, during training they were adjusted only the
union model parameters and the parameters in the value paths and advantage
respectively. As in the previous experiments, it is stated that available computing
resources were extremely limited for his needs problem and how the indicative
number of training cycles, as can be seen in Fig. 1, is 44,000,000 cycles instead
of the 450,000 training cycles run by model.

5 Conclusions and Future Work

Autonomous UAV navigation is an emerging concept in robotics where most
environments are unknown. Therefore, techniques for automated navigation are
3 https://github.com/segment tree.py.

https://github.com/openai/baselines/blob/master/baselines/common/segment_tree.py


On Autonomous Drone Navigation 145

increasing including modern AI systems that can analyse huge volumes of data
to uncover patterns leading to successful solutions. Using reinforcement learning,
the software learns a function that maximises the reward within an environment.
Rainbow-type agents were chosen because of their exceptional performance in
limited-action situations. As noted, an agent with high performance and opti-
mum policy was built by using preprocessed image as input for pattern recogni-
tion from a tensor allowing a deep convolutional neural network to train using
more data. Moreover, a better strategy may be established than the one utilised
here to build the agent using a multi-layer neural network core like Perceptron
as the current computing resources are insufficient to perform such tasks.

Future directions of this work include the construction of a model that utilizes
a set of sequential images at its input, which contain all the information the
agent needs in terms of the device, in terms of surroundings and in terms of the
goal. Perhaps a convolutional model will emerge which can be designed to detect
many different classes within an image to perform better than the convolutional
core used for the experimental evaluation. Ultimately, fine-tuning optimizations
include the use of more sophisticated algorithmic choices along with this work.

References

1. Karras, A., Karras, C., Giotopoulos, K.C., Giannoukou, I., Tsolis, D., Sioutas, S.:
Download speed optimization in P2P networks using decision making and adaptive
learning. In: Daimi, K., Al Sadoon, A. (eds.) Proceedings of the ICR’22 Interna-
tional Conference on Innovations in Computing Research. ICR 2022. Advances in
Intelligent Systems and Computing, vol. 1431, pp. 225–238. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-14054-9 22

2. Amer, K., Samy, M., Shaker, M., ElHelw, M.: Deep convolutional neural network
based autonomous drone navigation. In: Thirteenth International Conference on
Machine Vision, vol. 11605, pp. 16–24. SPIE (2021)

3. De Asis, K., Hernandez-Garcia, J., Holland, G., Sutton, R.: Multi-step reinforcement
learning: a unifying algorithm. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32 (2018)

4. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning.
In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

5. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

6. Roghair, J., Niaraki, A., Ko, K., Jannesari, A.: A vision based deep reinforcement
learning algorithm for UAV obstacle avoidance. In: Arai, K. (ed.) IntelliSys 2021.
LNNS, vol. 294, pp. 115–128. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-82193-7 8

7. Siciliano, B., Khatib, O., Kröger, T.: Springer Handbook of Robotics, vol. 200.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5

8. Um, J.S.: Drones as Cyber-Physical Systems. Springer, Singapore (2019). https://
doi.org/10.1007/978-981-13-3741-3

9. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-
learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30
(2016)

https://doi.org/10.1007/978-3-031-14054-9_22
https://doi.org/10.1007/978-3-030-82193-7_8
https://doi.org/10.1007/978-3-030-82193-7_8
https://doi.org/10.1007/978-3-540-30301-5
https://doi.org/10.1007/978-981-13-3741-3
https://doi.org/10.1007/978-981-13-3741-3

	On Autonomous Drone Navigation Using Deep Learning and an Intelligent Rainbow DQN Agent
	1 Introduction
	2 Preliminaries
	2.1 Value Function
	2.2 Multilayer Perceptron Neural Networks

	3 Methodology
	3.1 Deep Q Networks
	3.2 Double Deep Q Networks
	3.3 Learning with Multiple Training Cycles
	3.4 Rainbow Agent
	3.5 Problem Formulation

	4 Experimental Results
	5 Conclusions and Future Work
	References




