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Abstract. Query optimization is a crucial process across data mining
and big data analytics. As the size of the data in the modern applica-
tions is increasing due to various sources, types and multi-modal records
across databases, there is an urge to optimize lookup and search oper-
ations. Therefore, indexes can be utilized to solve the matter of rapid
data growth as they enhance the performance of the database and sub-
sequently the cloud server where it is stored. In this paper an index on
spatial data, i.e. coordinates on the plane or on the map is presented.
This index is be based on the R-Tree which is suitable for spatial data
and is distributed so that it can scale and adapt to massive amounts of
data without losing its performance. The results of the proposed method
are encouraging across all experiments and future directions of this work
include experiments on skewed data.

Keywords: Big data · NoSQL · Indexes · R-tree · Range queries ·
kNN

1 Introduction

Indexes are data structures that originated from the urge to rapidly locate data
contained within databases. In order to search for all records that belong to a
specific range or to generally fulfil certain criteria, users have to manually retrieve
each item and determine if it meets the parameters entered. For a database
with N items, this would need O(N) time, which is impractical for the massive
databases existing nowadays due to Big Data era. Consequently, an index is any
data structure that helps speed up the search process. However, to perform so,
additional storage writes and storage space are utilized. There are a number
of indexes that meet the varying requirements of geographical, chronological,
textual, and multidimensional data, among others. Choosing the appropriate
index for a specific use-case is a crucial aspect of the whole procedure since it
might lead to time complications while searching operations can vary between
O(logN) and O(1) time.
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2 Related Work and Motivation

The main motivation behind this work is smart query optimizers as the ones
presented in [1,6,9–11,13] along with indexing schemes. Moreover, optimized
versions of R-tree structures are presented in [3,4] whereas R-tree is used along
with machine learning methods to create a learned index which mainly focuses
on instance-optimized components. LSM-trees [12] are also of note, while their
optimized versions are presented in [2]. Moreover, an LSM index for spatial data
is shown in [5]. Spatial analytics require models that are hybrid structures as in
[8] utilizing R+ tree. Finally, multidimensional indexes are presented in [7,14].

3 Methodology

Having briefly discussed the efficient query optimizers, our optimized index is
presented here which is constructed using the widely-used R-Tree structure.

The distributed implementation comprises the procedure for constructing
the distributed R tree, followed by the capacity to conduct searches based on
range queries and nearest neighbours. The tree which is produced and stored in
HBase is static, meaning that no further input is permitted after its creation. To
construct the tree, a MapReduce task is utilized which involves a mapper and
a reducer function. The technique here is to separate the dataset and generate
local R-Trees for each element and then the trees are then stored within HBase.

The internal structure of an R-Tree record in an HBase database consists of
a ROWKEY, the MBR of the node1. The children of the node are kept in a family of
columns entitled children and each child corresponds to a column entitled child
and an index numbers the children. For the leaf nodes, the child0 column always
includes the word leaf so that it can be retrieved while traversing the tree, that
a leaf is reached. In the proposed method, the data contained in the dataset is
saved inside the records. HBase can handle extremely broad rows, therefore it is
useful to be able to get all of the entries within a sheet with a single visit to the
database rather than sending many GET calls. Obviously, this holds true if the
data corresponding to the points in the dataset is not enormous and the values
in the sheets include the ROWKEY of a record from the table storing the data.

In order to traverse the tree it is enough to use the values stored in the
columns as ROWKEY in subsequent functions of GETs operations. The root in
the traditional sense does not exist but there is an external file containing the
ROWKEYS (which are a list of MBRs) of its children. To store the R-Trees created
by each reducer in HBase, we use two models:

– A Localized Index: After partitioning the dataset, the local R-Trees are
stored in different HBase tables and the information to access them for
searches is stored in a file on the local system.

– A Global Index: After partitioning the dataset, the local R-Trees are all
stored in an HBase table whereas the information is stored in a local file.

1 which stores the coordinates in ascending order, beginning with the lower left corner
of the rectangle and ending with the top left corner.
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3.1 Enhanced Range Query for Localized Index

The range query search is based on the initial algorithmic structure whereas
the only difference is that we do not have a root in the R-tree but we instead
read the MBRs from an index file and check whether there is an element that
intersects our search area. This improved version is shown in Algorithm 1. This
version uses parallelization among threads to simultaneously search different
HBase tables containing local R-Trees. Hence, the search space in the query spans
2 children of the root and thus when used in two tables, the search is optimized.
A synchronized method is used for results printing, which prevents it from being
executed simultaneously by more than one thread. Moreover, all threads use
a single connection to HBase for scalability. Therefore, if a large number of
users try to query the index, the system can cope with 1 connection/user. If the
same search is performed simultaneously by many users then the load increases
significantly but in the Localized Index each thread operates on a different table
so the search load is evenly distributed among the tables in the worst case2.

Algorithm 1. Enhanced Range Query for Localized Index
1: procedure range search(search area)
2: connection ←− connectToHBase()
3: file ←− read file (index file)
4: for each line in file do
5: table,mbr ←− line.split()
6: if mbr intersects SearchArea then
7: startThread(SearchFunction(SearchArea, table, connection)
8: � Default range search algorithm
9: end if

10: end for
11: waitThreads()
12: end procedure

4 Experimental Results

In this Section, indexing, range queries, and k-nearest neighbour search per-
formance is evaluated. Three synthetic datasets of 5,000,000, 12,000,000, and
24,000,000 entries are utilised in the experiments. Each consists of a two-
dimensional point in Euclidean space and a label. The datasets were created
by a Python script that randomly generates user names from a [−10000, 10000]
uniformly3 and separates the lines based on first and last names.
2 Even when many users execute the same query at the same time.
3 This indicates that there are no thick or sparse regions within the space covered
within the datasets and ensures that the burden is dispersed evenly across the reduc-
ers.
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4.1 Index Construction

To construct the index, two models and a centralised implementation are com-
pared in terms of time for each of the datasets as shown in Fig. 1. The maximum
number of children per node M is set to 100 in all experiments, whereas the
number of reducers is set to 6. Note that it was essential to increase the Java
memory capacity to at least 4GBs in order to generate the index in the cen-
tralised approach for datasets containing between 12 and 24 million records.

Fig. 1. Indexing functions for Centralized, Global and Localized implementation.

The experiments show that both of the developed models have excellent
scalability as the index construction time rises in compact-size as the data size
grows4 compared to the centralised approach, where the duration varies from
around 1min for 5 million records to almost 8min for 12 million sorted5 records.
In terms of generation speed, the Localized model seems to outperform the
Global model as the amount of data grows.

4.2 Range Queries

The range search are compared among the two implemented models and the
MapReduce implementation as shown in Fig. 2. In order to evaluate the perfor-
mance of the different approaches, a comparison is done using range queries on a
dataset containing 12 million records and spanning a square-shaped region in the
center of the space. For the Localized implementation, six reducers were used,
resulting in six partitions along the x axis and six HBase tables. Four queries
were executed for each technique with square sides and each query was executed
four times. We take the average search time as the evaluation metric.
4 The distributed index contains Terabytes of records.
5 Because sorting is being done by HBase, PUT functions on a lower table size are
substantially quicker than on a much bigger table.
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Fig. 2. Square range search times for MapReduce, Localized and Global Indexes.

As we can observe, the MapReduce search solution is unsuitable for tiny
datasets and lacks in time due to the additional time necessary to launch a
MapReduce job, which consumes at least 40% of the time. Hence, the imple-
mentation in MapReduce is not recommended here and is not further discussed.
Regarding the two distributed index models, the implementations provide com-
parable performance, and it seems there is no optimal solution. However, for
the Localized technique an enhanced version that parallelizes the operation by
separating the index into many arrays is used. In Fig. 3, the improved approach
is compared to its predecessors for the specified quadratic ranges.

Fig. 3. Simple square range searches with an enhanced version of Localized search.
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To improve the lookup version to perform optimally, ranges that cover many
tables simultaneously are required. Figure. 3 shows that when the range is very
small, the enhanced version shows almost no difference from simple searches,
and in the case of 200, it performs lower due to the extra time spent on starting
a single thread rather than performing a direct search in a specific table. Due to
the fact that index partitioning into arrays is performed using the X -coordinate,
the enhanced search is most effective when dealing with long ranges. Hence, the
higher the improvement, the longer the search. Due to that, the measurements
were repeated with a search length such that searches are performed concurrently
on all six tables of the Localized index aforementioned, while we progressively
increased the search width. Increasing the search breadth results in increased
thread burden as shown in Fig. 4.

Fig. 4. Lookup times for long-length and variable-width ranges.

The improvement for long-distance searches is significantly larger. In fact,
the time required for a search with a breadth in the range [−1000, 1000] is about
twice that of typical search techniques. Therefore, we infer that as the number
of searches done by each thread rises, the search becomes faster as more searches
occur concurrently and parallelism is maximised.

4.3 kNN Queries

Both index models implement the same methods for closest neighbour queries
similarly to the centralised implementation. The measurements were performed
once again on the dataset consisting of 12,000,000 elements and concerned a
position, which we refer to as the Center Point, situated in the centre of the
dataset and a point placed outside the dataset, which we refer to as the Remote
Point. The searches for the two locations were conducted with progressively
increasing k (number of neighbours) to determine the evolution of the two models
over time in this form of search. Figure 5 (left) depicts the findings for the Center
Point, whereas Fig. 5 (right) depicts the Remote Point.
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Fig. 5. Nearest neighbor search for the point (0,0) (left) and (2000,2000) (right) located
in the center of the space covered by the dataset.

5 Conclusions and Future Work

In the context of this work, an enhanced localized index was created that greatly
reduces the time required for different queries compared to basic brute-force
searches and MapReduce. In addition, the index can manage increasing data
volumes without wildly straining its construction time and performance. This is
a useful feature in the era of Big Data, where data is rapidly expanding. However,
the index is static, meaning that it cannot be modified after its creation, although
this in no way diminishes its use. Data analytics in organisations and identifying
the objectives attained by a firm over a given period of time are two examples
of activities that demand rapid access to static data gathered over time. This
data is hundreds of gigabytes in size and does not change over the course of the
investigation. Consequently, the distributed index constructed may be a valuable
tool for indexing and searching them quickly and effectively.

In addition to determining the overall utility of the index, the efficiency
of the implemented index models must be determined. While both indexes in
their traditional form exhibit comparable performance, the Localized index is
the correct answer due to its flexibility and room for development. As we have
seen, several tables enable us to take use of parallelism in the search without
overwhelming a single table. In addition, it was determined that the Localized
index derived from the measurements used to construct the index (Fig. 1) scales
better in time as the input data of the global index rises.

Additionally, splitting the index into arrays provides an additional level of
locality-based data distribution, since each array represents a vast area in space.
Generalizing to non-spatial data as well, each of these tables may be a collection
of linked texts, sensor readings that happened within a certain time period.
This enables us to rank the index depending on the significance of each table
and the amount of search traffic it gets. The aforementioned flexibility is lacking
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in the Global approach, which stores the whole index in a single table and
distributes the data depending only on the partitioning performed by HBase in
the RegionServers. In order to disseminate this table among multiple network
nodes, we must first partition it, a time-consuming and error-prone procedure
for large volumes of data. Additionally, a RegionServer may have acquired more
popular data, resulting in an unequal distribution of load.

Future directions of this work include the handling of data skew, i.e. the
scenarios in which the dataset has highly dense or very sparse portions that
result in an unbalanced load distribution among the reducers.
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